These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 17243893)
1. The Immunobiology of SARS*. Chen J; Subbarao K Annu Rev Immunol; 2007; 25():443-72. PubMed ID: 17243893 [TBL] [Abstract][Full Text] [Related]
2. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Qian Z; Travanty EA; Oko L; Edeen K; Berglund A; Wang J; Ito Y; Holmes KV; Mason RJ Am J Respir Cell Mol Biol; 2013 Jun; 48(6):742-8. PubMed ID: 23418343 [TBL] [Abstract][Full Text] [Related]
3. Pathogenesis of severe acute respiratory syndrome. Lau YL; Peiris JS Curr Opin Immunol; 2005 Aug; 17(4):404-10. PubMed ID: 15950449 [TBL] [Abstract][Full Text] [Related]
4. How the SARS coronavirus causes disease: host or organism? Lo AW; Tang NL; To KF J Pathol; 2006 Jan; 208(2):142-51. PubMed ID: 16362992 [TBL] [Abstract][Full Text] [Related]
5. Differential virological and immunological outcome of severe acute respiratory syndrome coronavirus infection in susceptible and resistant transgenic mice expressing human angiotensin-converting enzyme 2. Yoshikawa N; Yoshikawa T; Hill T; Huang C; Watts DM; Makino S; Milligan G; Chan T; Peters CJ; Tseng CT J Virol; 2009 Jun; 83(11):5451-65. PubMed ID: 19297479 [TBL] [Abstract][Full Text] [Related]
6. Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus. Shih YP; Chen CY; Liu SJ; Chen KH; Lee YM; Chao YC; Chen YM J Virol; 2006 Nov; 80(21):10315-24. PubMed ID: 17041212 [TBL] [Abstract][Full Text] [Related]
7. Fully human monoclonal antibody directed to proteolytic cleavage site in severe acute respiratory syndrome (SARS) coronavirus S protein neutralizes the virus in a rhesus macaque SARS model. Miyoshi-Akiyama T; Ishida I; Fukushi M; Yamaguchi K; Matsuoka Y; Ishihara T; Tsukahara M; Hatakeyama S; Itoh N; Morisawa A; Yoshinaka Y; Yamamoto N; Lianfeng Z; Chuan Q; Kirikae T; Sasazuki T J Infect Dis; 2011 Jun; 203(11):1574-81. PubMed ID: 21592986 [TBL] [Abstract][Full Text] [Related]
8. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Pinto D; Park YJ; Beltramello M; Walls AC; Tortorici MA; Bianchi S; Jaconi S; Culap K; Zatta F; De Marco A; Peter A; Guarino B; Spreafico R; Cameroni E; Case JB; Chen RE; Havenar-Daughton C; Snell G; Telenti A; Virgin HW; Lanzavecchia A; Diamond MS; Fink K; Veesler D; Corti D Nature; 2020 Jul; 583(7815):290-295. PubMed ID: 32422645 [TBL] [Abstract][Full Text] [Related]
9. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. Yen YT; Liao F; Hsiao CH; Kao CL; Chen YC; Wu-Hsieh BA J Virol; 2006 Mar; 80(6):2684-93. PubMed ID: 16501078 [TBL] [Abstract][Full Text] [Related]
10. Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness. Sui J; Deming M; Rockx B; Liddington RC; Zhu QK; Baric RS; Marasco WA J Virol; 2014 Dec; 88(23):13769-80. PubMed ID: 25231316 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. Glass WG; Subbarao K; Murphy B; Murphy PM J Immunol; 2004 Sep; 173(6):4030-9. PubMed ID: 15356152 [TBL] [Abstract][Full Text] [Related]
13. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG mBio; 2020 Sep; 11(5):. PubMed ID: 32913009 [TBL] [Abstract][Full Text] [Related]
14. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV-1 cross-react with the newly-emerged SARS-CoV-2. Zheng Z; Monteil VM; Maurer-Stroh S; Yew CW; Leong C; Mohd-Ismail NK; Cheyyatraivendran Arularasu S; Chow VTK; Lin RTP; Mirazimi A; Hong W; Tan YJ Euro Surveill; 2020 Jul; 25(28):. PubMed ID: 32700671 [TBL] [Abstract][Full Text] [Related]
15. Exacerbated innate host response to SARS-CoV in aged non-human primates. Smits SL; de Lang A; van den Brand JM; Leijten LM; van IJcken WF; Eijkemans MJ; van Amerongen G; Kuiken T; Andeweg AC; Osterhaus AD; Haagmans BL PLoS Pathog; 2010 Feb; 6(2):e1000756. PubMed ID: 20140198 [TBL] [Abstract][Full Text] [Related]
16. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. Devaraj SG; Wang N; Chen Z; Chen Z; Tseng M; Barretto N; Lin R; Peters CJ; Tseng CT; Baker SC; Li K J Biol Chem; 2007 Nov; 282(44):32208-21. PubMed ID: 17761676 [TBL] [Abstract][Full Text] [Related]
17. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Wang SF; Tseng SP; Yen CH; Yang JY; Tsao CH; Shen CW; Chen KH; Liu FT; Liu WT; Chen YM; Huang JC Biochem Biophys Res Commun; 2014 Aug; 451(2):208-14. PubMed ID: 25073113 [TBL] [Abstract][Full Text] [Related]
18. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. Channappanavar R; Fett C; Zhao J; Meyerholz DK; Perlman S J Virol; 2014 Oct; 88(19):11034-44. PubMed ID: 25056892 [TBL] [Abstract][Full Text] [Related]
19. [Expression of severe acute respiratory syndrome coronavirus receptors, ACE2 and CD209L in different organ derived microvascular endothelial cells]. Li J; Gao J; Xu YP; Zhou TL; Jin YY; Lou JN Zhonghua Yi Xue Za Zhi; 2007 Mar; 87(12):833-7. PubMed ID: 17565868 [TBL] [Abstract][Full Text] [Related]
20. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Rossi GA; Sacco O; Mancino E; Cristiani L; Midulla F Infection; 2020 Oct; 48(5):665-669. PubMed ID: 32737833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]