BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17244609)

  • 1. Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors.
    Lee JH; Richter W; Namkung W; Kim KH; Kim E; Conti M; Lee MG
    J Biol Chem; 2007 Apr; 282(14):10414-22. PubMed ID: 17244609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension.
    Seidler U; Singh A; Chen M; Cinar A; Bachmann O; Zheng W; Wang J; Yeruva S; Riederer B
    Exp Physiol; 2009 Feb; 94(2):175-9. PubMed ID: 18931049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory regulation of cystic fibrosis transmembrane conductance regulator anion-transporting activities by Shank2.
    Kim JY; Han W; Namkung W; Lee JH; Kim KH; Shin H; Kim E; Lee MG
    J Biol Chem; 2004 Mar; 279(11):10389-96. PubMed ID: 14679199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells.
    Sun F; Hug MJ; Lewarchik CM; Yun CH; Bradbury NA; Frizzell RA
    J Biol Chem; 2000 Sep; 275(38):29539-46. PubMed ID: 10893422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling.
    Cushing PR; Fellows A; Villone D; Boisguérin P; Madden DR
    Biochemistry; 2008 Sep; 47(38):10084-98. PubMed ID: 18754678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner.
    Alshafie W; Chappe FG; Li M; Anini Y; Chappe VM
    Am J Physiol Cell Physiol; 2014 Jul; 307(1):C107-19. PubMed ID: 24788249
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Martin ER; Barbieri A; Ford RC; Robinson RC
    J Biol Chem; 2020 Apr; 295(14):4464-4476. PubMed ID: 32014995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway.
    Castellani S; Guerra L; Favia M; Di Gioia S; Casavola V; Conese M
    Lab Invest; 2012 Nov; 92(11):1527-40. PubMed ID: 22964850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia.
    Zhang W; Zhang Z; Zhang Y; Naren AP
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28869532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphodiesterase 8A Regulates CFTR Activity in Airway Epithelial Cells.
    Turner MJ; Sato Y; Thomas DY; Abbott-Banner K; Hanrahan JW
    Cell Physiol Biochem; 2021 Dec; 55(6):784-804. PubMed ID: 34936285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells.
    Favia M; Guerra L; Fanelli T; Cardone RA; Monterisi S; Di Sole F; Castellani S; Chen M; Seidler U; Reshkin SJ; Conese M; Casavola V
    Mol Biol Cell; 2010 Jan; 21(1):73-86. PubMed ID: 19889841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells.
    Guerra L; Fanelli T; Favia M; Riccardi SM; Busco G; Cardone RA; Carrabino S; Weinman EJ; Reshkin SJ; Conese M; Casavola V
    J Biol Chem; 2005 Dec; 280(49):40925-33. PubMed ID: 16203733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.
    Lobo MJ; Amaral MD; Zaccolo M; Farinha CM
    J Cell Sci; 2016 Jul; 129(13):2599-612. PubMed ID: 27206858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia.
    Benharouga M; Sharma M; So J; Haardt M; Drzymala L; Popov M; Schwapach B; Grinstein S; Du K; Lukacs GL
    J Biol Chem; 2003 Jun; 278(24):22079-89. PubMed ID: 12651858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton.
    Short DB; Trotter KW; Reczek D; Kreda SM; Bretscher A; Boucher RC; Stutts MJ; Milgram SL
    J Biol Chem; 1998 Jul; 273(31):19797-801. PubMed ID: 9677412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of beta 2-adrenergic receptor increases cystic fibrosis transmembrane conductance regulator expression in human airway epithelial cells through a cAMP/protein kinase A-independent pathway.
    Taouil K; Hinnrasky J; Hologne C; Corlieu P; Klossek JM; Puchelle E
    J Biol Chem; 2003 May; 278(19):17320-7. PubMed ID: 12621035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal protein kinase A regulatory interactions between cystic fibrosis transmembrane conductance regulator and Na+/H+ exchanger isoform 3 in a renal polarized epithelial cell model.
    Bagorda A; Guerra L; Di Sole F; Hemle-Kolb C; Cardone RA; Fanelli T; Reshkin SJ; Gisler SM; Murer H; Casavola V
    J Biol Chem; 2002 Jun; 277(24):21480-8. PubMed ID: 11937500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory interaction between the cystic fibrosis transmembrane conductance regulator and HCO3- salvage mechanisms in model systems and the mouse pancreatic duct.
    Ahn W; Kim KH; Lee JA; Kim JY; Choi JY; Moe OW; Milgram SL; Muallem S; Lee MG
    J Biol Chem; 2001 May; 276(20):17236-43. PubMed ID: 11278980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.
    Sharma N; LaRusch J; Sosnay PR; Gottschalk LB; Lopez AP; Pellicore MJ; Evans T; Davis E; Atalar M; Na CH; Rosson GD; Belchis D; Milewski M; Pandey A; Cutting GR
    Am J Physiol Lung Cell Mol Physiol; 2016 Dec; 311(6):L1170-L1182. PubMed ID: 27793802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shank2 mutant mice display a hypersecretory response to cholera toxin.
    Jung ES; Park J; Gee HY; Jung J; Noh SH; Lee JS; Richter W; Namkung W; Lee MG
    J Physiol; 2014 Apr; 592(8):1809-21. PubMed ID: 24445315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.