BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17244619)

  • 1. Allelic variation in the Depressaria pastinacella CYP6AB3 protein enhances metabolism of plant allelochemicals by altering a proximal surface residue and potential interactions with cytochrome P450 reductase.
    Mao W; Rupasinghe SG; Zangerl AR; Berenbaum MR; Schuler MA
    J Biol Chem; 2007 Apr; 282(14):10544-52. PubMed ID: 17244619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of myristicin by Depressaria pastinacella CYP6AB3v2 and inhibition by its metabolite.
    Mao W; Zangerl AR; Berenbaum MR; Schuler MA
    Insect Biochem Mol Biol; 2008 Jun; 38(6):645-51. PubMed ID: 18510976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable substrate-specificity of CYP6AB3 in Depressaria pastinacella, a highly specialized caterpillar.
    Mao W; Rupasinghe S; Zangerl AR; Schuler MA; Berenbaum MR
    Insect Mol Biol; 2006 Apr; 15(2):169-79. PubMed ID: 16640727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-specificity of cytochrome P450-mediated detoxification as an evolutionary strategy for specialization on furanocoumarin-containing hostplants: CYP6AE89 in parsnip webworms.
    Calla B; Wu WY; Dean CAE; Schuler MA; Berenbaum MR
    Insect Mol Biol; 2020 Feb; 29(1):112-123. PubMed ID: 31393031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella.
    Li W; Zangerl AR; Schuler MA; Berenbaum MR
    Insect Mol Biol; 2004 Dec; 13(6):603-13. PubMed ID: 15606809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase.
    Wen Z; Pan L; Berenbaum MR; Schuler MA
    Insect Biochem Mol Biol; 2003 Sep; 33(9):937-47. PubMed ID: 12915185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype matching in wild parsnip and parsnip webworms: causes and consequences.
    Zangerl AR; Berenbaum MR
    Evolution; 2003 Apr; 57(4):806-15. PubMed ID: 12778550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella).
    Niu G; Rupasinghe SG; Zangerl AR; Siegel JP; Schuler MA; Berenbaum MR
    Insect Biochem Mol Biol; 2011 Apr; 41(4):244-53. PubMed ID: 21220011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lutein sequestration and furanocoumarin metabolism in parsnip webworms under different ultraviolet light regimes in the montane west.
    Carroll MJ; Berenbaum MR
    J Chem Ecol; 2006 Feb; 32(2):277-305. PubMed ID: 16555136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GENETICS OF PHYSIOLOGICAL AND BEHAVIORAL RESISTANCE TO HOST FURANOCOUMARINS IN THE PARSNIP WEBWORM.
    Berenbaum MR; Zangerl AR
    Evolution; 1992 Oct; 46(5):1373-1384. PubMed ID: 28569000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera.
    Zhao C; Tang T; Feng X; Qiu L
    Pest Manag Sci; 2014 Jan; 70(1):130-9. PubMed ID: 23512641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of NADPH-cytochrome P450 reductase gene from the cotton bollworm, Helicoverpa armigera.
    Liu D; Zhou X; Li M; Zhu S; Qiu X
    Gene; 2014 Jul; 545(2):262-70. PubMed ID: 24768738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of furanocoumarin metabolites in parsnip webworm, Depressaria pastinacella.
    Nitao JK; Berhow M; Duval SM; Weisleder D; Vaughn SF; Zangerl A; Berenbaum MR
    J Chem Ecol; 2003 Mar; 29(3):671-82. PubMed ID: 12757327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of furanocoumarins on feeding behavior of parsnip webworms Depressaria pastinacella.
    Cianfrogna JA; Zangerl AR; Berenbaum MR
    J Chem Ecol; 2002 Jul; 28(7):1365-75. PubMed ID: 12199501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parsnip webworms and host plants at home and abroad: trophic complexity in a geographic mosaic.
    Berenbaum MR; Zangerl AR
    Ecology; 2006 Dec; 87(12):3070-81. PubMed ID: 17249232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational evolution of the cofactor-binding site of cytochrome P450 reductase yields variants with increased activity towards specific cytochrome P450 enzymes.
    Strohmaier SJ; Huang W; Baek JM; Hunter DJB; Gillam EMJ
    FEBS J; 2019 Nov; 286(22):4473-4493. PubMed ID: 31276316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning, bacterial expression and functional characterisation of cytochrome P450 monooxygenase, CYP97C27, and NADPH-cytochrome P450 reductase, CPR I, from Croton stellatopilosus Ohba.
    Sintupachee S; Ngamrojanavanich N; Sitthithaworn W; De-Eknamkul W
    Plant Sci; 2014 Dec; 229():131-141. PubMed ID: 25443840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea.
    Sasabe M; Wen Z; Berenbaum MR; Schuler MA
    Gene; 2004 Sep; 338(2):163-75. PubMed ID: 15315820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of proteolytically stable NADPH-cytochrome P450 reductase.
    Bonina TA; Gilep AA; Estabrook RW; Usanov SA
    Biochemistry (Mosc); 2005 Mar; 70(3):357-65. PubMed ID: 15823091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b5.
    Peyronneau MA; Renaud JP; Truan G; Urban P; Pompon D; Mansuy D
    Eur J Biochem; 1992 Jul; 207(1):109-16. PubMed ID: 1628642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.