These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 1724594)
21. Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B. Zubenko GS; Jones EW Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4581-5. PubMed ID: 228302 [TBL] [Abstract][Full Text] [Related]
22. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Veenhuis M; Douma A; Harder W; Osumi M Arch Microbiol; 1983 Jun; 134(3):193-203. PubMed ID: 6351780 [TBL] [Abstract][Full Text] [Related]
23. Location of catalase in crystalline peroxisomes of methanol-grown Hansenula polymorpha. Keizer I; Roggenkamp R; Harder W; Veenhuis M FEMS Microbiol Lett; 1992 May; 72(1):7-11. PubMed ID: 1612420 [TBL] [Abstract][Full Text] [Related]
24. The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins). Faber KN; Haima P; Gietl C; Harder W; Ab G; Veenhuis M Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12985-9. PubMed ID: 7809160 [TBL] [Abstract][Full Text] [Related]
25. Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha. Sagiroglu A; Altay V Prep Biochem Biotechnol; 2006; 36(4):321-32. PubMed ID: 16971303 [TBL] [Abstract][Full Text] [Related]
26. Glucose repression of maltase and methanol-oxidizing enzymes in the methylotrophic yeast Hansenula polymorpha: isolation and study of regulatory mutants. Alamäe T; Liiv L Folia Microbiol (Praha); 1998; 43(5):443-52. PubMed ID: 9821297 [TBL] [Abstract][Full Text] [Related]
27. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha. van der Klei IJ; Faber KN; Keizer-Gunnink I; Gietl C; Harder W; Veenhuis M FEBS Lett; 1993 Nov; 334(1):128-32. PubMed ID: 8224215 [TBL] [Abstract][Full Text] [Related]
28. Fructose-bisphosphatase as a substrate of cyclic AMP-dependent protein kinase. Hosey MM; Marcus F Proc Natl Acad Sci U S A; 1981 Jan; 78(1):91-4. PubMed ID: 6264456 [TBL] [Abstract][Full Text] [Related]
29. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. Stasyk OG; van Zutphen T; Ah Kang H; Stasyk OV; Veenhuis M; Sibirny AA FEMS Yeast Res; 2007 Oct; 7(7):1103-13. PubMed ID: 17854468 [TBL] [Abstract][Full Text] [Related]
30. Fructose-1,6-bisphosphatase degradation in the methylotrophic yeast Komagataella phaffii occurs in autophagy pathway. Dmytruk O; Bulbotka N; Zazulya A; Semkiv M; Dmytruk K; Sibirny A Cell Biol Int; 2021 Mar; 45(3):528-535. PubMed ID: 31903651 [TBL] [Abstract][Full Text] [Related]
31. Enzymes of glucose metabolism in liver of subjects with adult-onset diabetes. Belfiore F; Romeo F; Napoli E; Lo Vecchio L Diabetes; 1974 Apr; 23(4):293-301. PubMed ID: 4150923 [No Abstract] [Full Text] [Related]
32. Hansenula polymorpha Swi1p and Snf2p are essential for methanol utilisation. Ozimek P; Lahtchev K; Kiel JA; Veenhuis M; van der Klei IJ FEMS Yeast Res; 2004 May; 4(7):673-82. PubMed ID: 15093770 [TBL] [Abstract][Full Text] [Related]
33. In vivo and in vitro phosphorylation of rat liver fructose-1,6-bisphosphatase. Riou JP; Claus TH; Flockhart DA; Corbin JD; Pilkis SJ Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4615-9. PubMed ID: 200922 [TBL] [Abstract][Full Text] [Related]
34. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Entian KD; Dröll L; Mecke D Arch Microbiol; 1983 Jun; 134(3):187-192. PubMed ID: 6311131 [TBL] [Abstract][Full Text] [Related]
35. Constitutive appearance of peroxisomes in a regulatory mutant of the methylotrophic yeast Hansenula polymorpha. Roggenkamp R Mol Gen Genet; 1988 Aug; 213(2-3):535-40. PubMed ID: 3185515 [TBL] [Abstract][Full Text] [Related]
36. Characterization of peroxisome-deficient mutants of Hansenula polymorpha. Tan X; Titorenko VI; van der Klei IJ; Sulter GJ; Haima P; Waterham HR; Eyers M; Harder W; Veenhuis M; Cregg JM Curr Genet; 1995 Aug; 28(3):248-57. PubMed ID: 8529271 [TBL] [Abstract][Full Text] [Related]
37. Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grown Hansenula polymorpha. Veenhuis M; van Dijken JP; Harder W Arch Microbiol; 1976 Dec; 111(1-2):123-35. PubMed ID: 65162 [TBL] [Abstract][Full Text] [Related]
38. Growth of Hansenula polymorpha in a methanol-limited chemostat. Physiological responses due to the involvement of methanol oxidase as a key enzyme in methanol metabolism. van Dijken JP; Otto R; Harder W Arch Microbiol; 1976 Dec; 111(1-2):137-44. PubMed ID: 1015956 [TBL] [Abstract][Full Text] [Related]
39. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. Hung GC; Brown CR; Wolfe AB; Liu J; Chiang HL J Biol Chem; 2004 Nov; 279(47):49138-50. PubMed ID: 15358789 [TBL] [Abstract][Full Text] [Related]
40. The transcarboxylase domain of pyruvate carboxylase is essential for assembly of the peroxisomal flavoenzyme alcohol oxidase. Ozimek PZ; Klompmaker SH; Visser N; Veenhuis M; van der Klei IJ FEMS Yeast Res; 2007 Oct; 7(7):1082-92. PubMed ID: 17316367 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]