These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17246139)

  • 1. The Experimental Assessment of Fitness in Drosophila. II. a Comparison of Competitive and Noncompetitive Measures.
    Haymer DS; Hartl DL
    Genetics; 1983 Jun; 104(2):343-52. PubMed ID: 17246139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The experimental assessment of fitness in Drosophila. I. Comparative measures of competitive reproductive success.
    Haymer DS; Hartl DL
    Genetics; 1982 Nov; 102(3):455-66. PubMed ID: 17246096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Fitness and Its Components in Six Laboratory Strains of DROSOPHILA MELANOGASTER.
    Yamazaki T
    Genetics; 1984 Sep; 108(1):201-11. PubMed ID: 17246227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitness and its components in Drosophila melanogaster.
    Tanaka T; Yamazaki T
    Jpn J Genet; 1990 Dec; 65(6):417-26. PubMed ID: 2128455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of larval crowding on quantitative variation for development time and viability in
    Horváth B; Kalinka AT
    Ecol Evol; 2016 Dec; 6(23):8460-8473. PubMed ID: 28031798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic adaptation to captivity and inbreeding depression in small laboratory populations of Drosophila melanogaster.
    Latter BD; Mulley JC
    Genetics; 1995 Jan; 139(1):255-66. PubMed ID: 7705628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The estimation of epistasis in components of fitness in experimental populations of drosophila melanogaster II. Assessment of meiotic drive, viability, fecundity and sexual selection.
    Clark AG; Feldman MW
    Heredity (Edinb); 1981 Jun; 46(3):347-77. PubMed ID: 6792163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of
    Penley MJ; Morran LT
    Bio Protoc; 2018 Aug; 8(16):e2971. PubMed ID: 34395774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic control of insect population. I. Cage studies of chromosome replacement by compound autosomes in Drosophila melanogaster.
    Fitz-Earle M; Holm DG; Suzuki DT
    Genetics; 1973 Jul; 74(3):461-75. PubMed ID: 4200686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LABORATORY EVOLUTION OF LONGEVITY AND REPRODUCTIVE FITNESS COMPONENTS IN MALE FRUIT FLIES: MATING ABILITY.
    Service PM
    Evolution; 1993 Apr; 47(2):387-399. PubMed ID: 28568725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster.
    Latter BD; Mulley JC; Reid D; Pascoe L
    Genetics; 1995 Jan; 139(1):287-97. PubMed ID: 7705630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster.
    Latter BD
    Genetics; 1998 Mar; 148(3):1143-58. PubMed ID: 9539431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies of P- and hobo-element activity, fitness components and recombination parameters in two natural populations of Drosophila melanogaster in Moldova.
    Vereshchagina NM; Iliadi IK; Nikitich OA
    Hereditas; 1994; 120(2):91-8. PubMed ID: 8083062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the genetic load in Drosophila: synergistic epistasis and correlations among fitness components.
    Whitlock MC; Bourguet D
    Evolution; 2000 Oct; 54(5):1654-60. PubMed ID: 11108592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The competitive ability and fitness components of the Methoprene-tolerant (Met) Drosophila mutant resistant to juvenile hormone analog insecticides.
    Minkoff C; Wilson TG
    Genetics; 1992 May; 131(1):91-7. PubMed ID: 1592245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QUANTITATIVE GENETICS OF OVARIOLE NUMBER IN DROSOPHILA MELANOGASTER. I. SEGREGATING VARIATION AND FITNESS.
    Wayne ML; Hackett JB; Mackay TFC
    Evolution; 1997 Aug; 51(4):1156-1163. PubMed ID: 28565484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock.
    Singh K; Kochar E; Prasad NG
    PLoS One; 2015; 10(6):e0129992. PubMed ID: 26065704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Analysis of Natural Populations of DROSOPHILA MELANOGASTER in Japan. II. the Measurement of Fitness and Fitness Components in Homozygous Lines.
    Yamazaki T; Hirose Y
    Genetics; 1984 Sep; 108(1):213-21. PubMed ID: 17246228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitness of wild-caught Drosophila melanogaster females: allozyme variants of GPDH, ADH, PGM, and EST.
    Ochando MD; Ayala FJ
    Genetica; 1999; 105(1):7-18. PubMed ID: 10483089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.