These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1724679)

  • 1. Examination of subconductance levels arising from a single ion channel.
    Dani JA; Fox JA
    J Theor Biol; 1991 Dec; 153(3):401-23. PubMed ID: 1724679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subconductance states of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence.
    Premkumar LS; Qin F; Auerbach A
    J Gen Physiol; 1997 Feb; 109(2):181-9. PubMed ID: 9041447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K channel subconductance levels result from heteromeric pore conformations.
    Chapman ML; VanDongen AM
    J Gen Physiol; 2005 Aug; 126(2):87-103. PubMed ID: 16043772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycine receptors: what gets in and why?
    Barry PH; Schofield PR; Moorhouse AJ
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):935-6. PubMed ID: 10561819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden Markov model analysis of intermediate gating steps associated with the pore gate of shaker potassium channels.
    Zheng J; Vankataramanan L; Sigworth FJ
    J Gen Physiol; 2001 Nov; 118(5):547-64. PubMed ID: 11696611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
    Nadler B; Schuss Z; Hollerbach U; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051912. PubMed ID: 15600661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants of channel function.
    Andersen OS; Koeppe RE
    Physiol Rev; 1992 Oct; 72(4 Suppl):S89-158. PubMed ID: 1279736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel selectivity through stepwise changes in binding affinity.
    Dang TX; McCleskey EW
    J Gen Physiol; 1998 Feb; 111(2):185-93. PubMed ID: 9450938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels.
    Goulding EH; Tibbs GR; Liu D; Siegelbaum SA
    Nature; 1993 Jul; 364(6432):61-4. PubMed ID: 7686276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating.
    Chapman ML; VanDongen HM; VanDongen AM
    Biophys J; 1997 Feb; 72(2 Pt 1):708-19. PubMed ID: 9017198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curare binding and the curare-induced subconductance state of the acetylcholine receptor channel.
    Strecker GJ; Jackson MB
    Biophys J; 1989 Oct; 56(4):795-806. PubMed ID: 2479422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods.
    Karpen JW; Brown RL; Stryer L; Baylor DA
    J Gen Physiol; 1993 Jan; 101(1):1-25. PubMed ID: 7679715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics.
    Winegar BD; Haws CM; Lansman JB
    J Gen Physiol; 1996 Mar; 107(3):433-43. PubMed ID: 8868053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated ion flux through parallel pores: application to channel subconductance states.
    Berry RM; Edmonds DT
    J Membr Biol; 1993 Apr; 133(1):77-84. PubMed ID: 7686579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanotransducing ion channels in C6 glioma cells.
    Bowman CL; Lohr JW
    Glia; 1996 Nov; 18(3):161-76. PubMed ID: 8915649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeant ion binding affinity in subconductance states of an L-type Ca2+ channel expressed in Xenopus laevis oocytes.
    Cloues RK; Sather WA
    J Physiol; 2000 Apr; 524 Pt 1(Pt 1):19-36. PubMed ID: 10747181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeant ion-dependent changes in gating of Kir2.1 inward rectifier potassium channels.
    Lu T; Wu L; Xiao J; Yang J
    J Gen Physiol; 2001 Nov; 118(5):509-22. PubMed ID: 11696609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels.
    Díaz-Franulic I; Sepúlveda RV; Navarro-Quezada N; González-Nilo F; Naranjo D
    J Gen Physiol; 2015 Aug; 146(2):133-46. PubMed ID: 26216859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities.
    Veenstra RD; Wang HZ; Beyer EC; Ramanan SV; Brink PR
    Biophys J; 1994 Jun; 66(6):1915-28. PubMed ID: 7521227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple conductance states of the acetylcholine receptor channel complex.
    Morris CE; Montpetit M
    Can J Physiol Pharmacol; 1986 Mar; 64(3):347-55. PubMed ID: 2423218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.