These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 1724720)

  • 1. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors.
    Johnsson B; Löfås S; Lindquist G
    Anal Biochem; 1991 Nov; 198(2):268-77. PubMed ID: 1724720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study.
    Lahiri J; Isaacs L; Tien J; Whitesides GM
    Anal Chem; 1999 Feb; 71(4):777-90. PubMed ID: 10051846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay.
    Vashist SK; Dixit CK; MacCraith BD; O'Kennedy R
    Analyst; 2011 Nov; 136(21):4431-6. PubMed ID: 21904732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.
    Yamasaki R; Ito M; Lee B; Jung H; Lee H; Kawai T
    Anal Chim Acta; 2007 Nov; 603(1):76-81. PubMed ID: 17950060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces.
    Risse F; Gedig ET; Gutmann JS
    Anal Bioanal Chem; 2018 Jul; 410(17):4109-4122. PubMed ID: 29707751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies.
    Johnsson B; Löfås S; Lindquist G; Edström A; Müller Hillgren RM; Hansson A
    J Mol Recognit; 1995; 8(1-2):125-31. PubMed ID: 7541226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface wettability on the adhesion of proteins.
    Sethuraman A; Han M; Kane RS; Belfort G
    Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-resistant hyperbranched polyethyleneimine brush surfaces.
    Suriyanarayanan S; Lee HH; Liedberg B; Aastrup T; Nicholls IA
    J Colloid Interface Sci; 2013 Apr; 396():307-15. PubMed ID: 23403107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of specific attachment of proteins by adsorption of polymer layers.
    Erol M; Du H; Sukhishvili S
    Langmuir; 2006 Dec; 22(26):11329-36. PubMed ID: 17154622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization.
    Gashtasbi F; Ahmadian G; Noghabi KA
    Enzyme Microb Technol; 2014 Oct; 64-65():17-23. PubMed ID: 25152412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of immunoglobulins on silica surfaces. Kinetics of immobilization and influence of ionic strength.
    Jönsson U; Malmqvist M; Rönnberg I
    Biochem J; 1985 Apr; 227(2):373-8. PubMed ID: 2988498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel.
    Durand NF; Renaud P
    Lab Chip; 2009 Jan; 9(2):319-24. PubMed ID: 19107291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Method of orienting immobilized proteins on gold surface sensory modified with rhodanide].
    Boltovets PN; Diachenko NS; Snopok BA; Shirshov IuM
    Ukr Biokhim Zh (1999); 2002; 74(2):51-5. PubMed ID: 12152314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Orientation of proteins on the sensor surface and optimization of their immobilization by prior protection of the active center].
    Boltovets PN; Verevka SV; Diachenko NS; Snopok BA; Shirshov IuM
    Ukr Biokhim Zh (1999); 2002; 74(4):71-5. PubMed ID: 14964864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of antibody immobilization strategies in detection of Vibrio cholerae by surface plasmon resonance.
    Taheri RA; Rezayan AH; Rahimi F; Mohammadnejad J; Kamali M
    Biointerphases; 2016 Dec; 11(4):041006. PubMed ID: 27923270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity.
    Pei Z; Anderson H; Myrskog A; Dunér G; Ingemarsson B; Aastrup T
    Anal Biochem; 2010 Mar; 398(2):161-8. PubMed ID: 19962366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.
    Jachimska B; Świątek S; Loch JI; Lewiński K; Luxbacher T
    Bioelectrochemistry; 2018 Jun; 121():95-104. PubMed ID: 29413868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New immobilization method for immunoaffinity biosensors by using thiolated proteins.
    Pyun JC; Kim SD; Chung JW
    Anal Biochem; 2005 Dec; 347(2):227-33. PubMed ID: 16266682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular charges influence the response of surface plasmon resonance biosensors through electronic and ionic mechanisms.
    Šípová-Jungová H; Jurgová L; Mrkvová K; Lynn NS; Špačková B; Homola J
    Biosens Bioelectron; 2019 Feb; 126():365-372. PubMed ID: 30469074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.