These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17248992)

  • 1. The stepwise mutation model: an experimental evaluation utilizing hemoglobin variants.
    Fuerst PA; Ferrell RE
    Genetics; 1980 Jan; 94(1):185-201. PubMed ID: 17248992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mixed Model of Mutation for Electrophoretic Identity of Proteins within and between Populations.
    Li WH
    Genetics; 1976 Jun; 83(2):423-32. PubMed ID: 17248725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The analysis of hidden electrophoretic variation: interspecific electrophoretic differentiation and amino acid divergence.
    Fuerst PA; Ferrell RE
    J Mol Evol; 1983; 19(6):449-54. PubMed ID: 6655701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sensitivity of gel electrophoresis as a detector of genetic variation.
    Ramshaw JA; Coyne JA; Lewontin RC
    Genetics; 1979 Dec; 93(4):1019-37. PubMed ID: 546674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite stepwise mutation model under the neutral mutation hypothesis.
    Takahata N
    J Mol Evol; 1980 Mar; 15(1):13-20. PubMed ID: 6928979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Stepwise Mutation Model of Electrophoretic Mobility: Comparison of the Gel Sieving Behavior of Alleles at the Esterase-5 Locus of DROSOPHILA PSEUDOOBSCURA.
    Johnson GB
    Genetics; 1977 Sep; 87(1):139-57. PubMed ID: 17248754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Experimental Investigation of the Unit Charge Model of Protein Polymorphism and Its Relation to the Esterase-5 Locus of DROSOPHILA PSEUDOOBSCURA, DROSOPHILA PERSIMILIS, and DROSOPHILA MIRANDA.
    Cobbs G; Prakash S
    Genetics; 1977 Dec; 87(4):717-42. PubMed ID: 17248784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin Syracuse (alpha2beta2-143(H21)His leads to Pro), a new high-affinity variant detected by special electrophoretic methods. Observations on the auto-oxidation of normal and variant hemoglobins.
    Jensen M; Oski FA; Nathan DG; Bunn HF
    J Clin Invest; 1975 Mar; 55(3):469-77. PubMed ID: 234980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular charge and electrophoretic mobility in cetacean myoglobins of known sequence.
    McLellan T
    Biochem Genet; 1984 Feb; 22(1-2):181-200. PubMed ID: 6712587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on camel hemoglobin. 1. Physico-chemical properties and some structural aspects of camel hemoglobin (Camelus dromedarius).
    Lin KT; Bhown AS; Chernoff AI
    Biochim Biophys Acta; 1976 May; 434(1):110-7. PubMed ID: 7305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HPLC retention time as a diagnostic tool for hemoglobin variants and hemoglobinopathies: a study of 60000 samples in a clinical diagnostic laboratory.
    Joutovsky A; Hadzi-Nesic J; Nardi MA
    Clin Chem; 2004 Oct; 50(10):1736-47. PubMed ID: 15388656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge and size effects in the capillary zone electrophoresis of nuclease A and its variants.
    Kálmán F; Ma S; Hodel A; Fox RO; Horváth C
    Electrophoresis; 1995 Apr; 16(4):595-603. PubMed ID: 7588531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of heterogeneity in hemoglobins of Gallus domesticus and coturnix quail using disc-gel electrophoresis.
    Washburn KW; Yen CC
    Poult Sci; 1976 Sep; 55(5):1646-51. PubMed ID: 995797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the SPIFE 3000 semi-automated gel electrophoresis system for the identification of hemoglobin variants and comparison of relative electrophoretic mobilities with manual gel electrophoresis methods.
    Hoyer JD; Markley KM; Savedra ME; Kubik KS; Scheidt RM
    Int J Lab Hematol; 2010 Jun; 32(3):307-11. PubMed ID: 19765111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic mobility for peptides with post-translational modifications in capillary electrophoresis.
    Kim J; Zand R; Lubman DM
    Electrophoresis; 2003 Mar; 24(5):782-93. PubMed ID: 12627438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of genetic mutation in electrophoretic variant of human lactate dehydrogenase-A(M) subunit.
    Sudo K; Maekawa M; Shioya M; Ikeda K; Takahashi N; Isogai Y; Li SS; Kanno T; Machida K; Toriumi J
    Biochem Int; 1992 Sep; 27(6):1051-7. PubMed ID: 1445373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of electrophoretic mobility of proteins.
    Graur D
    J Theor Biol; 1986 Feb; 118(4):443-69. PubMed ID: 3713219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The charge-state model of protein polymorphism in natural populations.
    Marshall DR; Brown AH
    J Mol Evol; 1975 Nov; 6(3):149-63. PubMed ID: 1206725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic Mobilities of the Charge Variants of DNA and Other Polyelectrolytes: Similarities, Differences, and Comparison with Theory.
    Stellwagen NC
    J Phys Chem B; 2017 Mar; 121(9):2015-2026. PubMed ID: 28155277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.