BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17249668)

  • 1. Radical energies and the regiochemistry of addition to heme groups. Methylperoxy and nitrite radical additions to the heme of horseradish peroxidase.
    Wojciechowski G; de Montellano PR
    J Am Chem Soc; 2007 Feb; 129(6):1663-72. PubMed ID: 17249668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocatalytic modification of the prosthetic heme of horseradish but not lactoperoxidase by thiocyanate oxidation products. A role for heme-protein covalent cross-linking.
    Wojciechowski G; Huang L; Ortiz de Montellano PR
    J Am Chem Soc; 2005 Nov; 127(45):15871-9. PubMed ID: 16277530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation.
    Huang L; Colas C; Ortiz de Montellano PR
    J Am Chem Soc; 2004 Oct; 126(40):12865-73. PubMed ID: 15469283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase.
    Huang L; Wojciechowski G; Ortiz de Montellano PR
    J Am Chem Soc; 2005 Apr; 127(15):5345-53. PubMed ID: 15826172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical modification of prosthetic heme groups.
    Ortiz de Montellano PR
    Pharmacol Ther; 1990; 48(1):95-120. PubMed ID: 2274579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential additions to the myoglobin prosthetic heme group. Oxidative gamma-meso substitution by alkylhydrazines.
    Choe YS; Ortiz de Montellano PR
    J Biol Chem; 1991 May; 266(13):8523-30. PubMed ID: 1850746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arthromyces ramosus peroxidase produces two chlorinating species.
    Huang L; Ortiz de Montellano PR
    Biochem Biophys Res Commun; 2007 Apr; 355(2):581-6. PubMed ID: 17303078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX.
    Ortiz de Montellano PR; David SK; Ator MA; Tew D
    Biochemistry; 1988 Jul; 27(15):5470-6. PubMed ID: 3179265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing nitrite coordination in horseradish peroxidase by resonance Raman spectroscopy: Detection of two binding sites.
    Ioannou A; Pinakoulaki E
    J Inorg Biochem; 2017 Apr; 169():79-85. PubMed ID: 28160625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of horseradish peroxidase by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine.
    Sugiyama K; Woods A; Cotter RJ; Highet RJ; Darbyshire JF; Osawa Y; Gillette JR
    Chem Res Toxicol; 1994; 7(6):843-9. PubMed ID: 7696541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate oxidation by the heme edge of fungal peroxidases. Reaction of Coprinus macrorhizus peroxidase with hydrazines and sodium azide.
    DePillis GD; Ortiz de Montellano PR
    Biochemistry; 1989 Sep; 28(19):7947-52. PubMed ID: 2611222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilized isoporphyrin intermediates in the inactivation of horseradish peroxidase by alkylhydrazines.
    Ator MA; David SK; Ortiz de Montellano PR
    J Biol Chem; 1989 Jun; 264(16):9250-7. PubMed ID: 2722829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of heme-protein covalent bonds in mammalian peroxidases. Protection of the heme by a single engineered heme-protein link in horseradish peroxidase.
    Huang L; Wojciechowski G; Ortiz de Montellano PR
    J Biol Chem; 2006 Jul; 281(28):18983-8. PubMed ID: 16651262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic site of manganese peroxidase. Regiospecific addition of sodium azide and alkylhydrazines to the heme group.
    Harris RZ; Wariishi H; Gold MH; Ortiz de Montellano PR
    J Biol Chem; 1991 May; 266(14):8751-8. PubMed ID: 1851156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horseradish peroxidase mutants that autocatalytically modify their prosthetic heme group: insights into mammalian peroxidase heme-protein covalent bonds.
    Colas C; De Montellano PR
    J Biol Chem; 2004 Jun; 279(23):24131-40. PubMed ID: 15039425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrite attenuated hypochlorous acid-mediated heme degradation in hemoglobin.
    Lu N; Li J; Ren X; Tian R; Peng YY
    Chem Biol Interact; 2015 Aug; 238():25-32. PubMed ID: 26051522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network.
    Wang J; Evans JP; Ogura H; La Mar GN; Ortiz de Montellano PR
    Biochemistry; 2006 Jan; 45(1):61-73. PubMed ID: 16388581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the aromatic-donor-binding site of horseradish peroxidase using site-directed mutagenesis and the suicide substrate phenylhydrazine.
    Gilfoyle DJ; Rodriguez-Lopez JN; Smith AT
    Eur J Biochem; 1996 Mar; 236(2):714-22. PubMed ID: 8612649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and catalytic mechanism of horseradish peroxidase. Regiospecific meso alkylation of the prosthetic heme group by alkylhydrazines.
    Ator MA; David SK; Ortiz de Montellano PR
    J Biol Chem; 1987 Nov; 262(31):14954-60. PubMed ID: 3667617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photooxidation of porphyrin in Mg-substituted horseradish peroxidase.
    Deguchi J; Tamura M; Yamazaki I
    J Biol Chem; 1985 Dec; 260(29):15542-6. PubMed ID: 2999121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.