BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 17249699)

  • 1. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study.
    Shang L; Wang Y; Jiang J; Dong S
    Langmuir; 2007 Feb; 23(5):2714-21. PubMed ID: 17249699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and spectroscopic studies on the conformational structure of hemoglobin assembled on gold nanoparticles.
    Shao Q; Wu P; Gu P; Xu X; Zhang H; Cai C
    J Phys Chem B; 2011 Jul; 115(26):8627-37. PubMed ID: 21627314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV-visible, and infrared spectroscopy.
    Jiang X; Jiang J; Jin Y; Wang E; Dong S
    Biomacromolecules; 2005; 6(1):46-53. PubMed ID: 15638503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin.
    Chakraborty S; Joshi P; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    Langmuir; 2011 Jun; 27(12):7722-31. PubMed ID: 21591651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes.
    Wang HD; Niu CH; Yang Q; Badea I
    Nanotechnology; 2011 Apr; 22(14):145703. PubMed ID: 21346296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods.
    Zhang G; Wang L; Fu P; Hu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):424-31. PubMed ID: 21831703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin.
    Asha Jhonsi M; Kathiravan A; Renganathan R
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):167-72. PubMed ID: 19410435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies.
    Murawala P; Phadnis SM; Bhonde RR; Prasad BL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):224-8. PubMed ID: 19570660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods.
    Tsai DH; DelRio FW; Keene AM; Tyner KM; MacCuspie RI; Cho TJ; Zachariah MR; Hackley VA
    Langmuir; 2011 Mar; 27(6):2464-77. PubMed ID: 21341776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary structure changes in albumin upon surface adsorption observed via fourier transform infrared spectroscopy.
    Smith JR; Cicerone MT; Meuse CW
    Langmuir; 2009 Apr; 25(8):4571-8. PubMed ID: 19366224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA).
    Ravindran A; Singh A; Raichur AM; Chandrasekaran N; Mukherjee A
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):32-7. PubMed ID: 19896812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the interaction between antibacterial drug and bovine serum albumin: a spectroscopic approach.
    Naik PN; Chimatadar SA; Nandibewoor ST
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):841-5. PubMed ID: 19467922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of morin-conjugated Au nanoparticles: exploring the interaction efficiency with BSA using spectroscopic methods.
    Yue HL; Hu YJ; Huang HG; Jiang S; Tu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():402-10. PubMed ID: 24810026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.
    B S; Hegde AH; K C R; J S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():410-6. PubMed ID: 22112579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of bovine serum albumin and albumin-gold nanoconjugates with l-aspartic acid. A spectroscopic approach.
    Mandal G; Bardhan M; Ganguly T
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):178-84. PubMed ID: 20667434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GM1-induced structural changes of bovine serum albumin after chemical and thermal disruption of the secondary structure: a spectroscopic comparison.
    Gayen A; Chatterjee C; Mukhopadhyay C
    Biomacromolecules; 2008 Mar; 9(3):974-83. PubMed ID: 18205315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the interaction between Cu phen2+3 and bovine serum albumin by spectroscopic methods.
    Zhang YZ; Zhang XP; Hou HN; Dai J; Liu Y
    Biol Trace Elem Res; 2008 Mar; 121(3):276-87. PubMed ID: 17960331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the interaction between fluoroquinolones and bovine serum albumin.
    Seetharamappa J; Kamat BP
    J Pharm Biomed Anal; 2005 Oct; 39(5):1046-50. PubMed ID: 15985357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescent lanthanide-functionalized gold nanoparticles: exploiting the interaction with bovine serum albumin for potential sensing applications.
    Comby S; Gunnlaugsson T
    ACS Nano; 2011 Sep; 5(9):7184-97. PubMed ID: 21866979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach.
    Ranjan S; Dasgupta N; Srivastava P; Ramalingam C
    J Photochem Photobiol B; 2016 Aug; 161():472-81. PubMed ID: 27318604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.