BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17250676)

  • 1. Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria.
    Hyun DH; Hunt ND; Emerson SS; Hernandez JO; Mattson MP; de Cabo R
    J Neurochem; 2007 Mar; 100(5):1364-74. PubMed ID: 17250676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging.
    Hyun DH; Emerson SS; Jo DG; Mattson MP; de Cabo R
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19908-12. PubMed ID: 17167053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics.
    Hyun DH; Lee GH
    Age (Dordr); 2015 Dec; 37(6):122. PubMed ID: 26611738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial function in human neuroblastoma cells is up-regulated and protected by NQO1, a plasma membrane redox enzyme.
    Kim J; Kim SK; Kim HK; Mattson MP; Hyun DH
    PLoS One; 2013; 8(7):e69030. PubMed ID: 23874855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plasma membrane redox system in aging.
    Hyun DH; Hernandez JO; Mattson MP; de Cabo R
    Ageing Res Rev; 2006 May; 5(2):209-20. PubMed ID: 16697277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver.
    De Cabo R; Cabello R; Rios M; López-Lluch G; Ingram DK; Lane MA; Navas P
    Exp Gerontol; 2004 Mar; 39(3):297-304. PubMed ID: 15036389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of rho 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase.
    Martinus RD; Linnane AW; Nagley P
    Biochem Mol Biol Int; 1993 Dec; 31(6):997-1005. PubMed ID: 8193603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of plasma membrane coenzyme Q in aging and stress responses.
    Navas P; Villalba JM; de Cabo R
    Mitochondrion; 2007 Jun; 7 Suppl():S34-40. PubMed ID: 17482527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plasma membrane redox system is impaired by amyloid β-peptide and in the hippocampus and cerebral cortex of 3xTgAD mice.
    Hyun DH; Mughal MR; Yang H; Lee JH; Ko EJ; Hunt ND; de Cabo R; Mattson MP
    Exp Neurol; 2010 Oct; 225(2):423-9. PubMed ID: 20673763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plasma membrane redox enzyme NQO1 sustains cellular energetics and protects human neuroblastoma cells against metabolic and proteotoxic stress.
    Hyun DH; Kim J; Moon C; Lim CJ; de Cabo R; Mattson MP
    Age (Dordr); 2012 Apr; 34(2):359-70. PubMed ID: 21487704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma membrane redox enzymes: new therapeutic targets for neurodegenerative diseases.
    Hyun DH
    Arch Pharm Res; 2019 May; 42(5):436-445. PubMed ID: 30919268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquinol and a coenzyme Q reducing system protect platelet mitochondrial function of transfusional buffy coats from oxidative stress.
    Merlo Pich M; Castagnoli A; Biondi A; Bernacchia A; Tazzari PL; D'Aurelio M; Parenti Castelli G; Formiggini G; Conte R; Bovina C; Lenaz G
    Free Radic Res; 2002 Apr; 36(4):429-36. PubMed ID: 12069107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro.
    Mazzio EA; Reams RR; Soliman KF
    Brain Res; 2004 Apr; 1004(1-2):29-44. PubMed ID: 15033417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial DNA depletion promotes impaired oxidative status and adaptive resistance to apoptosis in T47D breast cancer cells.
    Yu M; Shi Y; Wei X; Yang Y; Zang F; Niu R
    Eur J Cancer Prev; 2009 Nov; 18(6):445-57. PubMed ID: 19609211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma membrane redox system in the control of stress-induced apoptosis.
    Villalba JM; Navas P
    Antioxid Redox Signal; 2000; 2(2):213-30. PubMed ID: 11229527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbate stabilization is stimulated in rho(0)HL-60 cells by CoQ10 increase at the plasma membrane.
    Gómez-Díaz C; Villalba JM; Pérez-Vicente R; Crane FL; Navas P
    Biochem Biophys Res Commun; 1997 May; 234(1):79-81. PubMed ID: 9168964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of mitochondria in neuronal cell death induced by oxidative stress; neuroprotection by Coenzyme Q10.
    Somayajulu M; McCarthy S; Hung M; Sikorska M; Borowy-Borowski H; Pandey S
    Neurobiol Dis; 2005 Apr; 18(3):618-27. PubMed ID: 15755687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.
    Mazzio EA; Soliman KF
    Biochem Pharmacol; 2004 Mar; 67(6):1167-84. PubMed ID: 15006552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.