These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 17250831)

  • 1. QSARs and activity predicting models for competitive inhibitors of adenosine deaminase.
    Sadat Hayatshahi SH; Abdolmaleki P; Ghiasi M; Safarian S
    FEBS Lett; 2007 Feb; 581(3):506-14. PubMed ID: 17250831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase.
    Sadat Hayatshahi SH; Abdolmaleki P; Safarian S; Khajeh K
    Biochem Biophys Res Commun; 2005 Dec; 338(2):1137-42. PubMed ID: 16256072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities.
    Goodarzi M; Freitas MP; Jensen R
    J Chem Inf Model; 2009 Apr; 49(4):824-32. PubMed ID: 19338295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography.
    Xia B; Ma W; Zhang X; Fan B
    Anal Chim Acta; 2007 Aug; 598(1):12-8. PubMed ID: 17693301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment.
    Nirouei M; Ghasemi G; Abdolmaleki P; Tavakoli A; Shariati S
    Indian J Biochem Biophys; 2012 Jun; 49(3):202-10. PubMed ID: 22803336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm.
    Jalali-Heravi M; Asadollahi-Baboli M; Shahbazikhah P
    Eur J Med Chem; 2008 Mar; 43(3):548-56. PubMed ID: 17602800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of human skin permeability using artificial neural network (ANN) modeling.
    Chen LJ; Lian GP; Han LJ
    Acta Pharmacol Sin; 2007 Apr; 28(4):591-600. PubMed ID: 17376301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.
    Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME
    Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the activity of furin inhibitors using artificial neural network.
    Worachartcheewan A; Nantasenamat C; Naenna T; Isarankura-Na-Ayudhya C; Prachayasittikul V
    Eur J Med Chem; 2009 Apr; 44(4):1664-73. PubMed ID: 18977558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors.
    Fernández M; Caballero J; Tundidor-Camba A
    Bioorg Med Chem; 2006 Jun; 14(12):4137-50. PubMed ID: 16504515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives.
    Mandal AS; Roy K
    Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.