These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 17250887)
1. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass composite foam scaffolds: assessment of cell attachment, proliferation and extracellular matrix production. Helen W; Merry CL; Blaker JJ; Gough JE Biomaterials; 2007 Apr; 28(11):2010-20. PubMed ID: 17250887 [TBL] [Abstract][Full Text] [Related]
2. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro. Helen W; Gough JE Acta Biomater; 2008 Mar; 4(2):230-43. PubMed ID: 18023627 [TBL] [Abstract][Full Text] [Related]
3. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Wilda H; Gough JE Biomaterials; 2006 Oct; 27(30):5220-9. PubMed ID: 16814857 [TBL] [Abstract][Full Text] [Related]
4. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Verrier S; Blaker JJ; Maquet V; Hench LL; Boccaccini AR Biomaterials; 2004 Jul; 25(15):3013-21. PubMed ID: 14967534 [TBL] [Abstract][Full Text] [Related]
5. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
6. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Lu W; Ji K; Kirkham J; Yan Y; Boccaccini AR; Kellett M; Jin Y; Yang XB Cell Tissue Res; 2014 Apr; 356(1):97-107. PubMed ID: 24408074 [TBL] [Abstract][Full Text] [Related]
7. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. Day RM; Maquet V; Boccaccini AR; Jérôme R; Forbes A J Biomed Mater Res A; 2005 Dec; 75(4):778-87. PubMed ID: 16082717 [TBL] [Abstract][Full Text] [Related]
9. Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization. Chen QZ; Boccaccini AR J Biomed Mater Res A; 2006 Jun; 77(3):445-57. PubMed ID: 16444684 [TBL] [Abstract][Full Text] [Related]
10. Study of the connectivity properties of Bioglass -filled polylactide foam scaffolds by image analysis and impedance spectroscopy. Blacher S; Maquet V; Jérôme R; Pirard JP; Boccaccini AR Acta Biomater; 2005 Sep; 1(5):565-74. PubMed ID: 16701836 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro. Wismer N; Grad S; Fortunato G; Ferguson SJ; Alini M; Eglin D Tissue Eng Part A; 2014 Feb; 20(3-4):672-82. PubMed ID: 24131280 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biological behavior. Leal AI; Caridade SG; Ma J; Yu N; Gomes ME; Reis RL; Jansen JA; Walboomers XF; Mano JF Dent Mater; 2013 Apr; 29(4):427-36. PubMed ID: 23422419 [TBL] [Abstract][Full Text] [Related]
13. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908 [TBL] [Abstract][Full Text] [Related]
14. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498 [TBL] [Abstract][Full Text] [Related]
15. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Roether JA; Boccaccini AR; Hench LL; Maquet V; Gautier S; Jérĵme R Biomaterials; 2002 Sep; 23(18):3871-8. PubMed ID: 12164192 [TBL] [Abstract][Full Text] [Related]
16. Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition. Barroca N; Daniel-da-Silva AL; Vilarinho PM; Fernandes MH Acta Biomater; 2010 Sep; 6(9):3611-20. PubMed ID: 20350622 [TBL] [Abstract][Full Text] [Related]
17. Proliferation of chondrocytes on porous poly(DL-lactide)/chitosan scaffolds. Wu H; Wan Y; Cao X; Wu Q Acta Biomater; 2008 Jan; 4(1):76-87. PubMed ID: 17986398 [TBL] [Abstract][Full Text] [Related]
18. Bioactive and mechanically strong Bioglass-poly(D,L-lactic acid) composite coatings on surgical sutures. Chen QZ; Blaker JJ; Boccaccini AR J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):354-63. PubMed ID: 16161126 [TBL] [Abstract][Full Text] [Related]
19. Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites. Blaker JJ; Bismarck A; Boccaccini AR; Young AM; Nazhat SN Acta Biomater; 2010 Mar; 6(3):756-62. PubMed ID: 19683603 [TBL] [Abstract][Full Text] [Related]
20. Surface modification of three-dimensional poly(d,l-lactic acid) scaffolds with baicalin: a histological study. Cai K; Yao K; Yang Z; Li X Acta Biomater; 2007 Jul; 3(4):597-605. PubMed ID: 17291842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]