BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17251036)

  • 1. The expression and purification of the N-terminal activation domain of the transcription factor c-Myc: a model substrate for exploring ERK2 docking interactions.
    Waas WF; Dalby KN
    Protein Expr Purif; 2007 May; 53(1):80-6. PubMed ID: 17251036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of a model substrate for transcription factor phosphorylation by ERK2.
    Waas WF; Dalby KN
    Protein Expr Purif; 2001 Oct; 23(1):191-7. PubMed ID: 11570862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.
    Zhang J; Zhou B; Zheng CF; Zhang ZY
    J Biol Chem; 2003 Aug; 278(32):29901-12. PubMed ID: 12754209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scintillation proximity assay for the Raf/MEK/ERK kinase cascade: high-throughput screening and identification of selective enzyme inhibitors.
    McDonald OB; Chen WJ; Ellis B; Hoffman C; Overton L; Rink M; Smith A; Marshall CJ; Wood ER
    Anal Biochem; 1999 Mar; 268(2):318-29. PubMed ID: 10075822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate.
    Scott JW; Norman DG; Hawley SA; Kontogiannis L; Hardie DG
    J Mol Biol; 2002 Mar; 317(2):309-23. PubMed ID: 11902845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and molecular analysis of the interaction between ERK2 MAP kinase and hypoxia inducible factor-1Ī±.
    Karapetsas A; Giannakakis A; Pavlaki M; Panayiotidis M; Sandaltzopoulos R; Galanis A
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1582-90. PubMed ID: 21807114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase.
    Guan KL; Dixon JE
    Anal Biochem; 1991 Feb; 192(2):262-7. PubMed ID: 1852137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial expression, purification and preliminary kinetic description of the kinase domain of v-fps.
    Gish G; McGlone ML; Pawson T; Adams JA
    Protein Eng; 1995 Jun; 8(6):609-14. PubMed ID: 8532686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic approach towards understanding substrate interactions and the catalytic mechanism of the serine/threonine protein kinase ERK2: identifying a potential regulatory role for divalent magnesium.
    Waas WF; Rainey MA; Szafranska AE; Cox K; Dalby KN
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):81-7. PubMed ID: 15023352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification and characterization of inactive and active forms of ERK2 from insect expression system.
    Yan K; Merritt H; Crawford K; Pardee G; Cheng JM; Widger S; Hekmat-Nejad M; Zaror I; Sim J
    Protein Expr Purif; 2015 Jun; 110():172-9. PubMed ID: 25818999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAP kinase binds to the NH2-terminal activation domain of c-Myc.
    Gupta S; Davis RJ
    FEBS Lett; 1994 Oct; 353(3):281-5. PubMed ID: 7957875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different domains of the mitogen-activated protein kinases ERK3 and ERK2 direct subcellular localization and upstream specificity in vivo.
    Robinson MJ; Xu Be BE; Stippec S; Cobb MH
    J Biol Chem; 2002 Feb; 277(7):5094-100. PubMed ID: 11741894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the transcription factor Ets-1 by ERK2: rapid dissociation of ADP and phospho-Ets-1.
    Callaway K; Waas WF; Rainey MA; Ren P; Dalby KN
    Biochemistry; 2010 May; 49(17):3619-30. PubMed ID: 20361728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression of soluble, active proteins in Escherichia coli: the human estrogen receptor hormone-binding domain as paradigm.
    Nygaard FB; Harlow KW
    Protein Expr Purif; 2001 Apr; 21(3):500-9. PubMed ID: 11281726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of a MAPKā€¢substrate complex in an active conformation: a computational and experimental approach.
    Lee S; Warthaka M; Yan C; Kaoud TS; Piserchio A; Ghose R; Ren P; Dalby KN
    PLoS One; 2011 Apr; 6(4):e18594. PubMed ID: 21494553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and regulation of a transiently assembled ERK2.Ets-1 signaling complex.
    Callaway KA; Rainey MA; Riggs AF; Abramczyk O; Dalby KN
    Biochemistry; 2006 Nov; 45(46):13719-33. PubMed ID: 17105191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient protein-protein interactions and a random-ordered kinetic mechanism for the phosphorylation of a transcription factor by extracellular-regulated protein kinase 2.
    Waas WF; Dalby KN
    J Biol Chem; 2002 Apr; 277(15):12532-40. PubMed ID: 11812784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A histidine substitution confers metal binding affinity to a Schistosoma japonicum Glutathione S-transferase.
    Han YH; Seo HA; Kim GH; Lee CK; Kang YK; Ryu KH; Chung YJ
    Protein Expr Purif; 2010 Sep; 73(1):74-7. PubMed ID: 20347989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.