These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 17251053)
21. Analysis of genotoxicity and the carcinogenic mode of action for ortho-phenylphenol. Brusick D Environ Mol Mutagen; 2005 Jun; 45(5):460-81. PubMed ID: 15714474 [TBL] [Abstract][Full Text] [Related]
22. Reduced hydroperoxidase (HPI and HPII) activity in the Deltafur mutant contributes to increased sensitivity to UVA radiation in Escherichia coli. Hoerter JD; Arnold AA; Ward CS; Sauer M; Johnson S; Fleming T; Eisenstark A J Photochem Photobiol B; 2005 May; 79(2):151-7. PubMed ID: 15878120 [TBL] [Abstract][Full Text] [Related]
23. Phenylhydroquinone induces loss of thymocytes through cell cycle arrest and apoptosis elevation in p53-dependent pathway. Nakata Y; Nishi K; Nishimoto S; Sugahara T J Toxicol Sci; 2013; 38(3):325-35. PubMed ID: 23665931 [TBL] [Abstract][Full Text] [Related]
24. Development of a new assay for evaluation of l-3,4-dihydroxyphenylalanine cytotoxicity in catalase-mutant Escherichia coli. Wang DH; Horita M; Tsutsui K; Sano K; Sauriasari R; Masuoka N; Takemura Y; Takigawa T; Takaki J; Ogino K Environ Toxicol Chem; 2008 Aug; 27(8):1768-72. PubMed ID: 18616383 [TBL] [Abstract][Full Text] [Related]
25. DNA damage in urinary bladder epithelium of male F344 rats treated with 2-phenyl-1,4-benzoquinone, one of the non-conjugated urinary metabolites of sodium o-phenylphenate. Morimoto K; Fukuoka M; Hasegawa R; Tanaka A; Takahashi A; Hayashi Y Jpn J Cancer Res; 1987 Oct; 78(10):1027-30. PubMed ID: 3119534 [TBL] [Abstract][Full Text] [Related]
26. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Mitchell RJ; Gu MB Appl Microbiol Biotechnol; 2004 Mar; 64(1):46-52. PubMed ID: 12937953 [TBL] [Abstract][Full Text] [Related]
27. Influence of polyphenols on Escherichia coli resistance to oxidative stress. Smirnova GV; Samoylova ZY; Muzyka NG; Oktyabrsky ON Free Radic Biol Med; 2009 Mar; 46(6):759-68. PubMed ID: 19135521 [TBL] [Abstract][Full Text] [Related]
28. [Activation of enzymes of soxRS-regulon by hydrogen peroxide in Escherichia coli]. Lushchak OV; Bahniukova TV; Lushchak VI Mikrobiol Z; 2009; 71(1):22-7. PubMed ID: 19663323 [TBL] [Abstract][Full Text] [Related]
29. Sensitivities and gene-expressions of Escherichia coli mutants deficient in DNA repair and reactive oxygen species scavenging capacity exposed to natural sunlight. Yonezawa Y; Nishioka H J Toxicol Environ Health A; 1999 Jun; 57(4):237-45. PubMed ID: 10406348 [TBL] [Abstract][Full Text] [Related]
30. Oxidative modifications produced in HL-60 cells on exposure to benzene metabolites. Rao NR; Snyder R J Appl Toxicol; 1995; 15(5):403-9. PubMed ID: 8666725 [TBL] [Abstract][Full Text] [Related]
31. Peroxidative activation of o-phenylhydroquinone leads to the formation of DNA adducts in HL-60 cells. Horvath E; Levay G; Pongracz K; Bodell WJ Carcinogenesis; 1992 Oct; 13(10):1937-9. PubMed ID: 1423859 [TBL] [Abstract][Full Text] [Related]
32. Urinary physiologic and chemical metabolic effects on the urothelial cytotoxicity and potential DNA adducts of o-phenylphenol in male rats. Smith RA; Christenson WR; Bartels MJ; Arnold LL; St John MK; Cano M; Garland EM; Lake SG; Wahle BS; McNett DA; Cohen SM Toxicol Appl Pharmacol; 1998 Jun; 150(2):402-13. PubMed ID: 9653072 [TBL] [Abstract][Full Text] [Related]
33. DNA adduct formation by o-phenylphenol metabolite in vivo and in vitro. Ushiyama K; Nagai F; Nakagawa A; Kano I Carcinogenesis; 1992 Aug; 13(8):1469-73. PubMed ID: 1499098 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Semchyshyn H; Bagnyukova T; Storey K; Lushchak V Cell Biol Int; 2005 Nov; 29(11):898-902. PubMed ID: 16202627 [TBL] [Abstract][Full Text] [Related]
35. Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Lee HJ; Gu MB Appl Microbiol Biotechnol; 2003 Jan; 60(5):577-80. PubMed ID: 12536259 [TBL] [Abstract][Full Text] [Related]
36. The metabolic profile of sodium o-phenylphenate after subchronic oral administration to rats. Nakao T; Ushiyama K; Kabashima J; Nagai F; Nakagawa A; Ohno T; Ichikawa H; Kobayashi H; Hiraga K Food Chem Toxicol; 1983 Jun; 21(3):325-9. PubMed ID: 6683228 [TBL] [Abstract][Full Text] [Related]
37. Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Fernandes PN; Mannarino SC; Silva CG; Pereira MD; Panek AD; Eleutherio EC Redox Rep; 2007; 12(5):236-44. PubMed ID: 17925096 [TBL] [Abstract][Full Text] [Related]
38. The role of urinary pH in o-phenylphenol-induced cytotoxicity and chromosomal damage in the bladders of F344 rats. Balakrishnan S; Hasegawa L; Eastmond DA Environ Mol Mutagen; 2016 Apr; 57(3):210-9. PubMed ID: 26919225 [TBL] [Abstract][Full Text] [Related]
39. Response to different oxidants of Saccharomyces cerevisiae ure2Delta mutant. Todorova TT; Petrova VY; Vuilleumier S; Kujumdzieva AV Arch Microbiol; 2009 Nov; 191(11):837-45. PubMed ID: 19777209 [TBL] [Abstract][Full Text] [Related]
40. Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. Zuo F; Yu R; Feng X; Khaskheli GB; Chen L; Ma H; Chen S Appl Microbiol Biotechnol; 2014 Sep; 98(17):7523-34. PubMed ID: 24903816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]