These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 17251115)

  • 1. Communication using eye roll reflective signalling.
    Novales Flamarique I; Mueller GA; Cheng CL; Figiel CR
    Proc Biol Sci; 2007 Mar; 274(1611):877-82. PubMed ID: 17251115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foraging performance of two fishes, the threespine stickleback and the Cumaná guppy, under different light backgrounds.
    Zukoshi R; Savelli I; Novales Flamarique I
    Vision Res; 2018 Apr; 145():31-38. PubMed ID: 29678538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones.
    Novales Flamarique I
    Proc Biol Sci; 2016 Mar; 283(1826):20160058. PubMed ID: 26936243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of cones from a cyprinid fish (Danio aequipinnatus) to ultraviolet and visible light.
    Palacios AG; Goldsmith TH; Bernard GD
    Vis Neurosci; 1996; 13(3):411-21. PubMed ID: 8782369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone photoreceptor topography in the retina of sexually mature Pacific salmonid fishes.
    Beaudet L; Novales Flamarique I; Hawryshyn CW
    J Comp Neurol; 1997 Jun; 383(1):49-59. PubMed ID: 9184985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour.
    Pérez i de Lanuza G; Font E
    J Exp Biol; 2014 Aug; 217(Pt 16):2899-909. PubMed ID: 24902749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific variation in retinal cone distribution in the bluefin killifish, Lucania goodei.
    Fuller RC; Fleishman LJ; Leal M; Travis J; Loew E
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Aug; 189(8):609-16. PubMed ID: 12879350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet polarization vision and visually guided behavior in fishes.
    Hawryshyn CW
    Brain Behav Evol; 2010; 75(3):186-94. PubMed ID: 20733294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and localization of an ultraviolet (sws1) opsin in the retina of the Japanese sardine Sardinops melanostictus (Teleostei: Clupeiformes).
    Miyazaki T; Kondrashev SL; Kasagi S; Mizusawa K; Takahashi A
    J Fish Biol; 2017 Mar; 90(3):954-967. PubMed ID: 27861878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpectedly low UV-sensitivity in a bird, the budgerigar.
    Chavez J; Kelber A; Vorobyev M; Lind O
    Biol Lett; 2014 Nov; 10(11):20140670. PubMed ID: 25376799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod and cone function in coneless mice.
    Williams GA; Daigle KA; Jacobs GH
    Vis Neurosci; 2005; 22(6):807-16. PubMed ID: 16469189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards.
    Martin M; Le Galliard JF; Meylan S; Loew ER
    J Exp Biol; 2015 Feb; 218(Pt 3):458-65. PubMed ID: 25524990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional segregation of retinal ganglion cell projections to the optic tectum of rainbow trout.
    Novales Flamarique I; Wachowiak M
    J Neurophysiol; 2015 Nov; 114(5):2703-17. PubMed ID: 26334009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.
    Cheng CL; Flamarique IN
    J Exp Biol; 2007 Dec; 210(Pt 23):4123-35. PubMed ID: 18025012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.