These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 17251264)

  • 1. The P-type ATPase CATP-1 is a novel regulator of C. elegans developmental timing that acts independently of its predicted pump function.
    Ruaud AF; Bessereau JL
    Development; 2007 Mar; 134(5):867-79. PubMed ID: 17251264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning.
    Tang LTH; Trivedi M; Freund J; Salazar CJ; Rahman M; Ramirez-Suarez NJ; Lee G; Wang Y; Grant BD; Bülow HE
    PLoS Genet; 2021 Jul; 17(7):e1009475. PubMed ID: 34197450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A life cycle alteration can correct molting defects in Caenorhabditis elegans.
    Binti S; Melinda RV; Joseph BB; Edeen PT; Miller SD; Fay DS
    Dev Biol; 2022 Mar; 483():143-156. PubMed ID: 35038442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of the Na
    Binti S; Edeen PT; Fay DS
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the C. elegans molt by pqn-47.
    Russel S; Frand AR; Ruvkun G
    Dev Biol; 2011 Dec; 360(2):297-309. PubMed ID: 21989027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal PAR-6 and PKC-3 are essential for larval development of
    Castiglioni VG; Pires HR; Rosas Bertolini R; Riga A; Kerver J; Boxem M
    Elife; 2020 Dec; 9():. PubMed ID: 33300872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function.
    Anand N; Holcom A; Broussalian M; Schmidt M; Chinta SJ; Lithgow GJ; Andersen JK; Chamoli M
    Neurobiol Dis; 2020 Jun; 139():104786. PubMed ID: 32032734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of SEC-23 in Caenorhabditis elegans causes defects in oogenesis, morphogenesis, and extracellular matrix secretion.
    Roberts B; Clucas C; Johnstone IL
    Mol Biol Cell; 2003 Nov; 14(11):4414-26. PubMed ID: 14551256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability.
    Korzelius J; The I; Ruijtenberg S; Portegijs V; Xu H; Horvitz HR; van den Heuvel S
    Dev Biol; 2011 Feb; 350(2):358-69. PubMed ID: 21146520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring temporal organization of postembryonic development from high-content behavioral tracking.
    Faerberg DF; Gurarie V; Ruvinsky I
    Dev Biol; 2021 Jul; 475():54-64. PubMed ID: 33636188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spatiotemporal reconstruction of the
    Kamal M; Tokmakjian L; Knox J; Mastrangelo P; Ji J; Cai H; Wojciechowski JW; Hughes MP; Takács K; Chu X; Pei J; Grolmusz V; Kotulska M; Forman-Kay JD; Roy PJ
    Elife; 2022 Oct; 11():. PubMed ID: 36259463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput screening platform for discovering bacterial species and small molecules that modify animal physiology.
    Nauta KM; Gates D; Mechan-Llontop M; Wang X; Nguyen K; Isaguirre CN; Genjdar M; Sheldon RD; Burton NO
    bioRxiv; 2024 Apr; ():. PubMed ID: 38746390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis supports a role for the nervous system in regulating growth and development of Fasciola hepatica juveniles.
    Robb E; McCammick EM; Wells D; McVeigh P; Gardiner E; Armstrong R; McCusker P; Mousley A; Clarke N; Marks NJ; Maule AG
    PLoS Negl Trop Dis; 2022 Nov; 16(11):e0010854. PubMed ID: 36342907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Myogenesis by a Na/K-ATPase α1 Caveolin-Binding Motif.
    Huang M; Wang X; Banerjee M; Mukherji ST; Kutz LC; Zhao A; Sepanski M; Fan CM; Zhu GZ; Tian J; Wang DZ; Zhu H; Xie ZJ; Pierre SV; Cai L
    Stem Cells; 2022 Mar; 40(2):133-148. PubMed ID: 35257186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Na
    Johnson CK; Fernandez-Abascal J; Wang Y; Wang L; Bianchi L
    J Neurophysiol; 2020 May; 123(5):2064-2074. PubMed ID: 32292107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities.
    Beckmann PJ; Largaespada DA
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles.
    Chisholm AD; Xu S
    Wiley Interdiscip Rev Dev Biol; 2012; 1(6):879-902. PubMed ID: 23539358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.
    Ruaud AF; Katic I; Bessereau JL
    Genetics; 2011 Jan; 187(1):337-43. PubMed ID: 20944013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a novel transport-independent function of PiT1/SLC20A1 in the regulation of TNF-induced apoptosis.
    Salaün C; Leroy C; Rousseau A; Boitez V; Beck L; Friedlander G
    J Biol Chem; 2010 Nov; 285(45):34408-18. PubMed ID: 20817733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the Caenorhabditis elegans genome using mariner transposons.
    Robert VJ; Bessereau JL
    Genetica; 2010 May; 138(5):541-9. PubMed ID: 19347589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.