BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17251370)

  • 1. Giant spontaneous depolarizing potentials in the developing thalamic reticular nucleus.
    Pangratz-Fuehrer S; Rudolph U; Huguenard JR
    J Neurophysiol; 2007 Mar; 97(3):2364-72. PubMed ID: 17251370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory interactions between ferret thalamic reticular neurons.
    Shu Y; McCormick DA
    J Neurophysiol; 2002 May; 87(5):2571-6. PubMed ID: 11976393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons.
    Jia F; Pignataro L; Schofield CM; Yue M; Harrison NL; Goldstein PA
    J Neurophysiol; 2005 Dec; 94(6):4491-501. PubMed ID: 16162835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus.
    Pangratz-Fuehrer S; Sieghart W; Rudolph U; Parada I; Huguenard JR
    J Neurophysiol; 2016 Mar; 115(3):1183-95. PubMed ID: 26631150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane and synaptic properties of nucleus tractus solitarius neurons projecting to the caudal ventrolateral medulla.
    Li DP; Yang Q
    Auton Neurosci; 2007 Oct; 136(1-2):69-81. PubMed ID: 17537680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice.
    Studer R; von Boehmer L; Haenggi T; Schweizer C; Benke D; Rudolph U; Fritschy JM
    Eur J Neurosci; 2006 Sep; 24(5):1307-15. PubMed ID: 16987218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha5GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons.
    Bonin RP; Martin LJ; MacDonald JF; Orser BA
    J Neurophysiol; 2007 Oct; 98(4):2244-54. PubMed ID: 17715197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials.
    Brambilla D; Franciosi S; Opp MR; Imeri L
    Eur J Neurosci; 2007 Oct; 26(7):1862-9. PubMed ID: 17868373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action-potential-independent GABAergic tone mediated by nicotinic stimulation of immature striatal miniature synaptic transmission.
    Liu Z; Otsu Y; Vasuta C; Nawa H; Murphy TH
    J Neurophysiol; 2007 Aug; 98(2):581-93. PubMed ID: 17553945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct actions of etomidate and propofol at beta3-containing gamma-aminobutyric acid type A receptors.
    Drexler B; Jurd R; Rudolph U; Antkowiak B
    Neuropharmacology; 2009 Sep; 57(4):446-55. PubMed ID: 19555700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and pharmacological properties of GABA(A) receptors in single thalamic neurons and GABA(A) subunit expression.
    Browne SH; Kang J; Akk G; Chiang LW; Schulman H; Huguenard JR; Prince DA
    J Neurophysiol; 2001 Nov; 86(5):2312-22. PubMed ID: 11698521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    Nat Neurosci; 1999 Feb; 2(2):168-74. PubMed ID: 10195202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of GABA transporter 3 in GABAergic synaptic transmission at striatal output neurons.
    Kirmse K; Kirischuk S; Grantyn R
    Synapse; 2009 Oct; 63(10):921-9. PubMed ID: 19588470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain.
    Yoshida M; Fukuda S; Tozuka Y; Miyamoto Y; Hisatsune T
    J Neurobiol; 2004 Aug; 60(2):166-75. PubMed ID: 15266648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory GABA in rodent developing neocortex in vitro.
    Rheims S; Minlebaev M; Ivanov A; Represa A; Khazipov R; Holmes GL; Ben-Ari Y; Zilberter Y
    J Neurophysiol; 2008 Aug; 100(2):609-19. PubMed ID: 18497364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal alterations of the inhibitory synaptic responses recorded from cortical pyramidal neurons in the Lis1/sLis1 mutant mouse.
    Valdés-Sánchez L; Escámez T; Echevarria D; Ballesta JJ; Tabarés-Seisdedos R; Reiner O; Martinez S; Geijo-Barrientos E
    Mol Cell Neurosci; 2007 Jun; 35(2):220-9. PubMed ID: 17433713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings.
    Tyzio R; Holmes GL; Ben-Ari Y; Khazipov R
    Epilepsia; 2007; 48 Suppl 5():96-105. PubMed ID: 17910587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina.
    Zhang LL; Pathak HR; Coulter DA; Freed MA; Vardi N
    J Neurophysiol; 2006 Apr; 95(4):2404-16. PubMed ID: 16371454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal sleep homeostasis and lack of epilepsy phenotype in GABA A receptor alpha3 subunit-knockout mice.
    Winsky-Sommerer R; Knapman A; Fedele DE; Schofield CM; Vyazovskiy VV; Rudolph U; Huguenard JR; Fritschy JM; Tobler I
    Neuroscience; 2008 Jun; 154(2):595-605. PubMed ID: 18485607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.