These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17251474)

  • 1. Direct matrix metalloproteinase enhancement of transscleral permeability.
    Lindsey JD; Crowston JG; Tran A; Morris C; Weinreb RN
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):752-5. PubMed ID: 17251474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased human scleral permeability with prostaglandin exposure.
    Kim JW; Lindsey JD; Wang N; Weinreb RN
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1514-21. PubMed ID: 11381055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice.
    Kim TW; Lindsey JD; Aihara M; Anthony TL; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1809-16. PubMed ID: 12036983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced FGF-2 movement through human sclera after exposure to latanoprost.
    Aihara M; Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2554-9. PubMed ID: 11581197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of benzalkonium chloride on transscleral drug delivery.
    Okabe K; Kimura H; Okabe J; Kato A; Shimizu H; Ueda T; Shimada S; Ogura Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):703-8. PubMed ID: 15671302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of scleral macromolecular permeability with prostaglandins.
    Weinreb RN
    Trans Am Ophthalmol Soc; 2001; 99():319-43. PubMed ID: 11797317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the mouse uveoscleral outflow pathway using fluorescent dextran.
    Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2201-5. PubMed ID: 12091417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of intraocular pressure on the transscleral diffusion of high-molecular-weight compounds.
    Cruysberg LP; Nuijts RM; Geroski DH; Gilbert JA; Hendrikse F; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3790-4. PubMed ID: 16186364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera.
    Weinreb RN; Lindsey JD; Marchenko G; Marchenko N; Angert M; Strongin A
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4368-77. PubMed ID: 15557445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer.
    Cheruvu NP; Kompella UB
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4513-22. PubMed ID: 17003447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetics of intraocular drug delivery of Oregon green 488-labeled triamcinolone by subtenon injection using ocular fluorophotometry in rabbit eyes.
    Lee SJ; Kim ES; Geroski DH; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4506-14. PubMed ID: 18503001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion of high molecular weight compounds through sclera.
    Ambati J; Canakis CS; Miller JW; Gragoudas ES; Edwards A; Weissgold DJ; Kim I; Delori FC; Adamis AP
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1181-5. PubMed ID: 10752958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning.
    Olsen TW; Edelhauser HF; Lim JI; Geroski DH
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1893-903. PubMed ID: 7543465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scleral permeability varies by mouse strain and is decreased by chronic experimental glaucoma.
    Pease ME; Oglesby EN; Cone-Kimball E; Jefferys JL; Steinhart MR; Kim AJ; Hanes J; Quigley HA
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2564-73. PubMed ID: 24557355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of molecular weight on intracameral dextran movement to the posterior segment of the mouse eye.
    Bernd AS; Aihara M; Lindsey JD; Weinreb RN
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):480-4. PubMed ID: 14744888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of matrix metalloproteinases and their inhibitors in experimental retinal ischemia-reperfusion injury in rats.
    Zhang X; Sakamoto T; Hata Y; Kubota T; Hisatomi T; Murata T; Ishibashi T; Inomata H
    Exp Eye Res; 2002 May; 74(5):577-84. PubMed ID: 12076079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of macromolecules through sclera.
    Miao H; Wu BD; Tao Y; Li XX
    Acta Ophthalmol; 2013 Feb; 91(1):e1-6. PubMed ID: 22998133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uveoscleral outflow using different-sized fluorescent tracers in normal and inflamed eyes.
    Toris CB; Gregerson DS; Pederson JE
    Exp Eye Res; 1987 Oct; 45(4):525-32. PubMed ID: 2448157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of uveoscleral outflow in normotensive and glaucomatous Beagles by 3H-labeled dextran.
    Barrie KP; Gum GG; Samuelson DA; Gelatt KN
    Am J Vet Res; 1985 Jan; 46(1):84-8. PubMed ID: 2578758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocular tissue distribution of betamethasone after anterior-episcleral, posterior-episcleral, and anterior-intrascleral placement of nonbiodegradable implants.
    Okabe K; Kimura H; Okabe J; Ogura Y
    Retina; 2007; 27(6):770-7. PubMed ID: 17621189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.