BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17251966)

  • 1. Surface chemistry: repellent legs.
    Mitchinson A
    Nature; 2007 Jan; 445(7126):373. PubMed ID: 17251966
    [No Abstract]   [Full Text] [Related]  

  • 2. Direct three-dimensional imaging of the buried interfaces between water and superhydrophobic surfaces.
    Luo C; Zheng H; Wang L; Fang H; Hu J; Fan C; Cao Y; Wang J
    Angew Chem Int Ed Engl; 2010 Nov; 49(48):9145-8. PubMed ID: 20931579
    [No Abstract]   [Full Text] [Related]  

  • 3. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces.
    Zhang X; Tan S; Zhao N; Guo X; Zhang X; Zhang Y; Xu J
    Chemphyschem; 2006 Oct; 7(10):2067-70. PubMed ID: 16941559
    [No Abstract]   [Full Text] [Related]  

  • 4. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.
    Burton Z; Bhushan B
    Ultramicroscopy; 2006; 106(8-9):709-19. PubMed ID: 16675115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties.
    Qu M; Zhao G; Cao X; Zhang J
    Langmuir; 2008 Apr; 24(8):4185-9. PubMed ID: 18324852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate.
    Wu Y; Hang T; Yu Z; Xu L; Li M
    Chem Commun (Camb); 2014 Aug; 50(61):8405-7. PubMed ID: 24946911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves.
    Tang X; Dong J; Li X
    J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach.
    Balani K; Batista RG; Lahiri D; Agarwal A
    Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film.
    Kamei J; Saito Y; Yabu H
    Langmuir; 2014 Dec; 30(47):14118-22. PubMed ID: 25401223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically inspired tunable hydrophilic/hydrophobic surfaces: a copper oxide self-assembly multitier approach.
    Zhang BJ; Park J; Kim KJ; Yoon H
    Bioinspir Biomim; 2012 Sep; 7(3):036011. PubMed ID: 22556129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beauty of lotus is more than skin deep: highly buoyant superhydrophobic films.
    Choi Y; Brugarolas T; Kang SM; Park BJ; Kim BS; Lee CS; Lee D
    ACS Appl Mater Interfaces; 2014 May; 6(10):7009-13. PubMed ID: 24801001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium.
    Truong VK; Webb HK; Fadeeva E; Chichkov BN; Wu AH; Lamb R; Wang JY; Crawford RJ; Ivanova EP
    Biofouling; 2012; 28(6):539-50. PubMed ID: 22686938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic "water strider leg" with highly refined nanogroove structure and remarkable water-repellent performance.
    Bai F; Wu J; Gong G; Guo L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16237-42. PubMed ID: 25157582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of surface wettability based on nanoparticles.
    Gao N; Yan Y
    Nanoscale; 2012 Apr; 4(7):2202-18. PubMed ID: 22392411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new peptide-silica bio-inspired stationary phase with an improved approach for hydrophilic interaction liquid chromatography.
    Ray S; Takafuji M; Ihara H
    Analyst; 2012 Nov; 137(21):4907-9. PubMed ID: 22962658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired fabrication of lotus leaf like membranes as fluorescent sensing materials.
    Heng L; Wang X; Dong Y; Zhai J; Tang BZ; Wei T; Jiang L
    Chem Asian J; 2008 Jun; 3(6):1041-5. PubMed ID: 18446919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repellency of the lotus leaf: resistance to water intrusion under hydrostatic pressure.
    Extrand CW
    Langmuir; 2011 Jun; 27(11):6920-5. PubMed ID: 21545123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.