These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 17251976)

  • 1. A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimetre.
    Green JE; Choi JW; Boukai A; Bunimovich Y; Johnston-Halperin E; DeIonno E; Luo Y; Sheriff BA; Xu K; Shin YS; Tseng HR; Stoddart JF; Heath JR
    Nature; 2007 Jan; 445(7126):414-7. PubMed ID: 17251976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits.
    Beckman R; Johnston-Halperin E; Luo Y; Green JE; Heath JR
    Science; 2005 Oct; 310(5747):465-8. PubMed ID: 16195426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
    Cao Q; Kim HS; Pimparkar N; Kulkarni JP; Wang C; Shim M; Roy K; Alam MA; Rogers JA
    Nature; 2008 Jul; 454(7203):495-500. PubMed ID: 18650920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biohybrid dynamic random access memory.
    Sinclair J; Granfeldt D; Pihl J; Millingen M; Lincoln P; Farre C; Peterson L; Orwar O
    J Am Chem Soc; 2006 Apr; 128(15):5109-13. PubMed ID: 16608345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast low-power optical memory based on coupled micro-ring lasers.
    Hill MT; Dorren HJ; De Vries T; Leijtens XJ; Den Besten JH; Smalbrugge B; Oei YS; Binsma H; Khoe GD; Smit MK
    Nature; 2004 Nov; 432(7014):206-9. PubMed ID: 15538365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A memristor-based nonvolatile latch circuit.
    Robinett W; Pickett M; Borghetti J; Xia Q; Snider GS; Medeiros-Ribeiro G; Williams RS
    Nanotechnology; 2010 Jun; 21(23):235203. PubMed ID: 20472941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect-tolerant architectures for nanoelectronic crossbar memories.
    Strukov DB; Likharev KK
    J Nanosci Nanotechnol; 2007 Jan; 7(1):151-67. PubMed ID: 17455481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular memory based on nanowire-molecular wire heterostructures.
    Li C; Lei B; Fan W; Zhang D; Meyyappan M; Zhou C
    J Nanosci Nanotechnol; 2007 Jan; 7(1):138-50. PubMed ID: 17455480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of a defect-tolerant nanocrossbar demultiplexer.
    Li Z; Pickett MD; Stewart D; Ohlberg DA; Li X; Wu W; Robinett W; Williams RS
    Nanotechnology; 2008 Apr; 19(16):165203. PubMed ID: 21825637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic memory and control devices.
    Groisman A; Enzelberger M; Quake SR
    Science; 2003 May; 300(5621):955-8. PubMed ID: 12738857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spintronics.
    Johnson M
    J Phys Chem B; 2005 Aug; 109(30):14278-91. PubMed ID: 16852795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic control of elastomeric microfluidic circuits with shape memory actuators.
    Vyawahare S; Sitaula S; Martin S; Adalian D; Scherer A
    Lab Chip; 2008 Sep; 8(9):1530-5. PubMed ID: 18818809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.
    Lee TJ; Chang CW; Hahm SG; Kim K; Park S; Kim DM; Kim J; Kwon WS; Liou GS; Ree M
    Nanotechnology; 2009 Apr; 20(13):135204. PubMed ID: 19420490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Technology and real performances of a new circuit for new pacemaker (author's transl)].
    Audoglio R; Sullivan R
    G Ital Cardiol; 1978; 8 Suppl 1():263-70. PubMed ID: 754962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing bistable [2]rotaxanes for molecular electronic devices.
    Dichtel WR; Heath JR; Stoddart JF
    Philos Trans A Math Phys Eng Sci; 2007 Jun; 365(1855):1607-25. PubMed ID: 17430812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronics using hybrid-molecular and mono-molecular devices.
    Joachim C; Gimzewski JK; Aviram A
    Nature; 2000 Nov; 408(6812):541-8. PubMed ID: 11117734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional molecules in electronic circuits.
    Weibel N; Grunder S; Mayor M
    Org Biomol Chem; 2007 Aug; 5(15):2343-53. PubMed ID: 17637951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale integration: what is yet to come?
    Noyce RN
    Science; 1977 Mar; 195(4283):1102-6. PubMed ID: 17789715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.