BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1725257)

  • 1. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli.
    Aagaard C; Rosendahl G; Dam M; Powers T; Douthwaite S
    Biochimie; 1991 Dec; 73(12):1439-44. PubMed ID: 1725257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable.
    O'Connor M; Lee WM; Mankad A; Squires CL; Dahlberg AE
    Nucleic Acids Res; 2001 Feb; 29(3):710-5. PubMed ID: 11160893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action.
    Xiong L; Kloss P; Douthwaite S; Andersen NM; Swaney S; Shinabarger DL; Mankin AS
    J Bacteriol; 2000 Oct; 182(19):5325-31. PubMed ID: 10986233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop.
    Douthwaite S; Aagaard C
    J Mol Biol; 1993 Aug; 232(3):725-31. PubMed ID: 7689111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions within 23S rRNA involving the peptidyltransferase center.
    Douthwaite S
    J Bacteriol; 1992 Feb; 174(4):1333-8. PubMed ID: 1531223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allele-specific structure probing of plasmid-derived 16S ribosomal RNA from Escherichia coli.
    Powers T; Noller HF
    Gene; 1993 Jan; 123(1):75-80. PubMed ID: 7678570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a single base change in ribosomal RNA leading to erythromycin resistance.
    Vannuffel P; Di Giambattista M; Morgan EA; Cocito C
    J Biol Chem; 1992 Apr; 267(12):8377-82. PubMed ID: 1569089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition determinants for proteins and antibiotics within 23S rRNA.
    Douthwalte S; Voldborg B; Hansen LH; Rosendahl G; Vester B
    Biochem Cell Biol; 1995; 73(11-12):1179-85. PubMed ID: 8722035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance.
    Douthwaite S; Powers T; Lee JY; Noller HF
    J Mol Biol; 1989 Oct; 209(4):655-65. PubMed ID: 2685326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre.
    Xiong L; Shah S; Mauvais P; Mankin AS
    Mol Microbiol; 1999 Jan; 31(2):633-9. PubMed ID: 10027979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments.
    Yokoyama T; Suzuki T
    Nucleic Acids Res; 2008 Jun; 36(11):3539-51. PubMed ID: 18456707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative assembly of proteins in the ribosomal GTPase centre demonstrated by their interactions with mutant 23S rRNAs.
    Rosendahl G; Douthwaite S
    Nucleic Acids Res; 1995 Jul; 23(13):2396-403. PubMed ID: 7630717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical resistance to erythromycin and clindamycin in cutaneous propionibacteria isolated from acne patients is associated with mutations in 23S rRNA.
    Ross JI; Eady EA; Cove JH; Jones CE; Ratyal AH; Miller YW; Vyakrnam S; Cunliffe WJ
    Antimicrob Agents Chemother; 1997 May; 41(5):1162-5. PubMed ID: 9145890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome.
    Burakovsky DE; Sergiev PV; Steblyanko MA; Konevega AL; Bogdanov AA; Dontsova OA
    FEBS Lett; 2011 Oct; 585(19):3073-8. PubMed ID: 21875584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    Eur J Biochem; 1994 Nov; 226(1):141-7. PubMed ID: 7957241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui.
    Matadeen R; Sergiev P; Leonov A; Pape T; van der Sluis E; Mueller F; Osswald M; von Knoblauch K; Brimacombe R; Bogdanov A; van Heel M; Dontsova O
    J Mol Biol; 2001 Apr; 307(5):1341-9. PubMed ID: 11292346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome.
    Samaha RR; Green R; Noller HF
    Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.