These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 17252758)
41. Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots. Nassiopoulou AG; Olzierski A; Tsoi E; Berbezier I; Karmous A J Nanosci Nanotechnol; 2007 Jan; 7(1):316-21. PubMed ID: 17455497 [TBL] [Abstract][Full Text] [Related]
42. Electrical control of single hole spins in nanowire quantum dots. Pribiag VS; Nadj-Perge S; Frolov SM; van den Berg JW; van Weperen I; Plissard SR; Bakkers EP; Kouwenhoven LP Nat Nanotechnol; 2013 Mar; 8(3):170-4. PubMed ID: 23416794 [TBL] [Abstract][Full Text] [Related]
43. Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes. Li F; Mi Z; Vicknesh S Opt Lett; 2009 Oct; 34(19):2915-7. PubMed ID: 19794766 [TBL] [Abstract][Full Text] [Related]
44. Ultrafast near-field spectroscopy of single semiconductor quantum dots. Lienau C Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):861-79. PubMed ID: 15306498 [TBL] [Abstract][Full Text] [Related]
47. Direct observation of polarons in electron populated quantum dots by resonant Raman scattering. Aslan B; Liu HC; Korkusinski M; Hawrylak P; Lockwood DJ J Nanosci Nanotechnol; 2008 Feb; 8(2):789-94. PubMed ID: 18464407 [TBL] [Abstract][Full Text] [Related]
48. Few electron limit of n-type metal oxide semiconductor single electron transistors. Prati E; De Michielis M; Belli M; Cocco S; Fanciulli M; Kotekar-Patil D; Ruoff M; Kern DP; Wharam DA; Verduijn J; Tettamanzi GC; Rogge S; Roche B; Wacquez R; Jehl X; Vinet M; Sanquer M Nanotechnology; 2012 Jun; 23(21):215204. PubMed ID: 22552118 [TBL] [Abstract][Full Text] [Related]
49. Probing exciton diffusion in semiconductors using semiconductor-nanorod quantum structures. Yoo J; Yi GC; Dang le S Small; 2008 Apr; 4(4):467-70. PubMed ID: 18398921 [No Abstract] [Full Text] [Related]
50. Quantum phase transition and underscreened Kondo effect in electron transport through parallel double quantum dots. Ding GH; Ye F; Dong B J Phys Condens Matter; 2009 Nov; 21(45):455303. PubMed ID: 21694008 [TBL] [Abstract][Full Text] [Related]
51. Self-assembly of nanosized 0D clusters: CdS quantum dot-polyoxotungstate nanohybrids with strongly coupled electronic structures and visible-light-active photofunctions. Kim HN; Kim TW; Choi KH; Kim IY; Kim YR; Hwang SJ Chemistry; 2011 Aug; 17(35):9626-33. PubMed ID: 21780198 [TBL] [Abstract][Full Text] [Related]
52. Atomistic insights for InAs quantum dot formation on GaAs(001) using STM within a MBE growth chamber. Tsukamoto S; Honma T; Bell GR; Ishii A; Arakawa Y Small; 2006 Mar; 2(3):386-9. PubMed ID: 17193056 [No Abstract] [Full Text] [Related]
53. Charge sensed Pauli blockade in a metal-oxide-semiconductor lateral double quantum dot. Nguyen KT; Lilly MP; Nielsen E; Bishop N; Rahman R; Young R; Wendt J; Dominguez J; Pluym T; Stevens J; Lu TM; Muller R; Carroll MS Nano Lett; 2013; 13(12):5785-90. PubMed ID: 24199677 [TBL] [Abstract][Full Text] [Related]
54. Study of single silicon quantum dots' band gap and single-electron charging energies by room temperature scanning tunneling microscopy. Zaknoon B; Bahir G; Saguy C; Edrei R; Hoffman A; Rao RA; Muralidhar R; Chang KM Nano Lett; 2008 Jun; 8(6):1689-94. PubMed ID: 18484776 [TBL] [Abstract][Full Text] [Related]
55. Spin transport in spin filtering magnetic tunneling junctions. Li Y; Lee EK J Nanosci Nanotechnol; 2007 Nov; 7(11):4143-5. PubMed ID: 18047137 [TBL] [Abstract][Full Text] [Related]
56. Aqueous carbon-nanotube-amphiphilic-block-copolymer nanoensembles: towards realization of charge-transfer processes with semiconductor quantum dots. Mountrichas G; Pispas S; Tagmatarchis N Small; 2007 Mar; 3(3):404-7. PubMed ID: 17245781 [No Abstract] [Full Text] [Related]
57. Quantum interference and electron correlation in charge transport through triangular quantum dot molecules. Chen CC; Chang YC; Kuo DM Phys Chem Chem Phys; 2015 Mar; 17(9):6606-11. PubMed ID: 25660124 [TBL] [Abstract][Full Text] [Related]
58. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403 [TBL] [Abstract][Full Text] [Related]
59. Controlled storage and transfer of photonic space-time quantum-coherence in active quantum dot nanomaterials. Gehrig E; Hess O Opt Express; 2008 Mar; 16(6):3744-52. PubMed ID: 18542469 [TBL] [Abstract][Full Text] [Related]