These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17252999)

  • 1. Methane oxidation in water-spreading and compost biofilters.
    Powelson DK; Chanton J; Abichou T; Morales J
    Waste Manag Res; 2006 Dec; 24(6):528-36. PubMed ID: 17252999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of various environmental and design parameters on methane oxidation in a model biofilter.
    Park S; Brown KW; Thomas JC
    Waste Manag Res; 2002 Oct; 20(5):434-44. PubMed ID: 12498480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial oxidation of methane from old landfills in biofilters.
    Streese J; Stegmann R
    Waste Manag; 2003; 23(7):573-80. PubMed ID: 12957152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency.
    Bohn S; Brunke P; Gebert J; Jager J
    Waste Manag; 2011 May; 31(5):854-63. PubMed ID: 21169005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane.
    Gebert J; Gröngröft A
    Waste Manag; 2006; 26(4):399-407. PubMed ID: 16386887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing a biofilter cover design to mitigate dairy effluent pond methane emissions.
    Pratt C; Deslippe J; Tate KR
    Environ Sci Technol; 2013 Jan; 47(1):526-32. PubMed ID: 23214965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.
    Haubrichs R; Widmann R
    Waste Manag; 2006; 26(4):408-16. PubMed ID: 16386886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane oxidation in biofilters measured by mass-balance and stable isotope methods.
    Powelson DK; Chanton JP; Abichou T
    Environ Sci Technol; 2007 Jan; 41(2):620-5. PubMed ID: 17310731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of bed properties on methane removal in an aerated biofilter--model studies.
    Pawłowska M; Rożej A; Stępniewski W
    Waste Manag; 2011 May; 31(5):903-13. PubMed ID: 21087851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters.
    Hrad M; Huber-Humer M; Wimmer B; Reichenauer TG
    Waste Manag; 2012 Dec; 32(12):2324-35. PubMed ID: 22749719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Availability and properties of materials for the Fakse Landfill biocover.
    Pedersen GB; Scheutz C; Kjeldsen P
    Waste Manag; 2011 May; 31(5):884-94. PubMed ID: 21185710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive drainage and biofiltration of landfill gas: results of Australian field trial.
    Dever SA; Swarbrick GE; Stuetz RM
    Waste Manag; 2011 May; 31(5):1029-48. PubMed ID: 21147522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation.
    Scheutz C; Cassini F; De Schoenmaeker J; Kjeldsen P
    Waste Manag; 2017 May; 63():203-212. PubMed ID: 28161333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive landfill gas emission - Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters.
    Gebert J; Groengroeft A
    Waste Manag; 2006; 26(3):245-51. PubMed ID: 16387238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation.
    Stern JC; Chanton J; Abichou T; Powelson D; Yuan L; Escoriza S; Bogner J
    Waste Manag; 2007; 27(9):1248-58. PubMed ID: 17005386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of microbial landfill methane oxidation in biofilters.
    Gebert J; Groengroeft A; Miehlich G
    Waste Manag; 2003; 23(7):609-19. PubMed ID: 12957156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative evaluation of the performance of full-scale high-rate methane biofilter (HMBF) systems and flow-through laboratory columns.
    Gunasekera SS; Hettiaratchi JP; Bartholameuz EM; Farrokhzadeh H; Irvine E
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35845-35854. PubMed ID: 30276693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term behavior of passively aerated compost methanotrophic biofilter columns.
    Wilshusen JH; Hettiaratchi JP; Stein VB
    Waste Manag; 2004; 24(7):643-53. PubMed ID: 15288296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter.
    Lebrero R; López JC; Lehtinen I; Pérez R; Quijano G; Muñoz R
    Chemosphere; 2016 Feb; 144():97-106. PubMed ID: 26347931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills.
    Perdikea K; Mehrotra AK; Hettiaratchi JP
    Waste Manag; 2008; 28(8):1364-74. PubMed ID: 17851063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.