BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17253004)

  • 1. Report: recycling of flame-retarded plastics from waste electric and electronic equipment (WEEE).
    Schlummer M; Mäurer A; Leitner T; Spruzina W
    Waste Manag Res; 2006 Dec; 24(6):573-83. PubMed ID: 17253004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management.
    Schlummer M; Gruber L; Mäurer A; Wolz G; van Eldik R
    Chemosphere; 2007 Apr; 67(9):1866-76. PubMed ID: 17207844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of PBDD/F from PBDE in electronic waste in recycling processes and under simulated extruding conditions.
    Zennegg M; Schluep M; Streicher-Porte M; Lienemann P; Haag R; Gerecke AC
    Chemosphere; 2014 Dec; 116():34-9. PubMed ID: 24491317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the recyclability of flame-retarded plastics.
    Imai T; Hamm S; Rothenbacher KP
    Environ Sci Technol; 2003 Feb; 37(3):652-6. PubMed ID: 12630485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of PBDD/F from flame-retarded plastic materials under thermal stress.
    Ebert J; Bahadir M
    Environ Int; 2003 Sep; 29(6):711-6. PubMed ID: 12850090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-combustion syntheses of PCDD/F and PBDD/F from halogen-rich fuel is suppressed by a pebble heater technology.
    Schlummer M; Mäurer A; van Eldik R; Quicker P; Fischer W; Faulstich M
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):414-20. PubMed ID: 17993225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WEEE plastic sorting for bromine essential to enforce EU regulation.
    Hennebert P; Filella M
    Waste Manag; 2018 Jan; 71():390-399. PubMed ID: 29030119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of polybrominated diphenyl ethers and PBDD/Fs during the recycling of high impact polystyrene containing decabromodiphenyl ether and antimony oxide.
    Hamm S; Strikkeling M; Ranken PF; Rothenbacher KP
    Chemosphere; 2001 Sep; 44(6):1353-60. PubMed ID: 11513112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal air sampling and analysis of polybrominated diphenyl ethers and other bromine containing compounds at an electronic recycling facility in Sweden.
    Pettersson-Julander A; van Bavel B; Engwall M; Westberg H
    J Environ Monit; 2004 Nov; 6(11):874-80. PubMed ID: 15536500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market.
    Puype F; Samsonek J; Knoop J; Egelkraut-Holtus M; Ortlieb M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(3):410-26. PubMed ID: 25599136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of waste electrical and electronic equipment: effect of antinomy trioxide on the pyrolysis of styrenic polymers.
    Hall WJ; Bhaskar T; Merpati NM; Muto A; Sakata Y; Williams PT
    Environ Technol; 2007 Sep; 28(9):1045-54. PubMed ID: 17910257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility.
    Wang D; Cai Z; Jiang G; Leung A; Wong MH; Wong WK
    Chemosphere; 2005 Aug; 60(6):810-6. PubMed ID: 15946727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of flame retarded polymers and recycling materials.
    Riess M; Ernst T; Popp R; Müller B; Thoma H; Vierle O; Wolf M; van Eldik R
    Chemosphere; 2000; 40(9-11):937-41. PubMed ID: 10739029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of brominated flame retardants in styrenic polymers. Comparison of the extraction efficiency of ultrasonication, microwave-assisted extraction and pressurised liquid extraction.
    Vilaplana F; Karlsson P; Ribes-Greus A; Ivarsson P; Karlsson S
    J Chromatogr A; 2008 Jul; 1196-1197():139-46. PubMed ID: 18511058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RoHS regulated substances in mixed plastics from waste electrical and electronic equipment.
    Wäger PA; Schluep M; Müller E; Gloor R
    Environ Sci Technol; 2012 Jan; 46(2):628-35. PubMed ID: 22126427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF.
    Aldrian A; Ledersteger A; Pomberger R
    Waste Manag; 2015 Feb; 36():297-304. PubMed ID: 25464945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of halogenated aromatic compounds in some raw material lots for an aluminium recycling plant.
    Sinkkonen S; Paasivirta J; Lahtiperä M; Vattulainen A
    Environ Int; 2004 May; 30(3):363-6. PubMed ID: 14987867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants.
    Charitopoulou MA; Kalogiannis KG; Lappas AA; Achilias DS
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):59190-59213. PubMed ID: 32638300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.
    Oleszek S; Grabda M; Shibata E; Nakamura T
    Waste Manag; 2013 Sep; 33(9):1835-42. PubMed ID: 23746984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.