BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17253090)

  • 1. Enzyme-driven speciation: crystallizing Archaea via lipid capture.
    Payandeh J; Pai EF
    J Mol Evol; 2007 Mar; 64(3):364-74. PubMed ID: 17253090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins and evolution of isoprenoid lipid biosynthesis in archaea.
    Boucher Y; Kamekura M; Doolittle WF
    Mol Microbiol; 2004 Apr; 52(2):515-27. PubMed ID: 15066037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme.
    Payandeh J; Fujihashi M; Gillon W; Pai EF
    J Biol Chem; 2006 Mar; 281(9):6070-8. PubMed ID: 16377641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase from Thermoplasma acidophilum in complex with the substrate sn-glycerol 1-phosphate.
    Nemoto N; Miyazono KI; Tanokura M; Yamagishi A
    Acta Crystallogr F Struct Biol Commun; 2019 Jul; 75(Pt 7):470-479. PubMed ID: 31282866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexamerization and thermostability emerged very early during geranylgeranylglyceryl phosphate synthase evolution.
    Kropp C; Straub K; Linde M; Babinger P
    Protein Sci; 2021 Mar; 30(3):583-596. PubMed ID: 33342010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive analysis of the geranylgeranylglyceryl phosphate synthase enzyme family identifies novel members and reveals mechanisms of substrate specificity and quaternary structure organization.
    Peterhoff D; Beer B; Rajendran C; Kumpula EP; Kapetaniou E; Guldan H; Wierenga RK; Sterner R; Babinger P
    Mol Microbiol; 2014 May; 92(4):885-99. PubMed ID: 24684232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of archaeal membrane lipids: digeranylgeranylglycerophospholipid reductase of the thermoacidophilic archaeon Thermoplasma acidophilum.
    Nishimura Y; Eguchi T
    J Biochem; 2006 Jun; 139(6):1073-81. PubMed ID: 16788058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic archaeon Sulfolobus solfataricus. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids.
    Hemmi H; Shibuya K; Takahashi Y; Nakayama T; Nishino T
    J Biol Chem; 2004 Nov; 279(48):50197-203. PubMed ID: 15356000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-evaluation of the archaeal membrane lipid biosynthetic pathway.
    Villanueva L; Damsté JS; Schouten S
    Nat Rev Microbiol; 2014 Jun; 12(6):438-48. PubMed ID: 24801941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic- and genome-derived insight into the evolution of N-glycosylation in Archaea.
    Kaminski L; Lurie-Weinberger MN; Allers T; Gophna U; Eichler J
    Mol Phylogenet Evol; 2013 Aug; 68(2):327-39. PubMed ID: 23567024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea.
    Groussin M; Gouy M
    Mol Biol Evol; 2011 Sep; 28(9):2661-74. PubMed ID: 21498602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies of geranylgeranylglyceryl phosphate synthase, a prenyltransferase found in thermophilic Euryarchaeota.
    Blank PN; Barnett AA; Ronnebaum TA; Alderfer KE; Gillott BN; Christianson DW; Himmelberger JA
    Acta Crystallogr D Struct Biol; 2020 Jun; 76(Pt 6):542-557. PubMed ID: 32496216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels.
    Höcker B; Claren J; Sterner R
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16448-53. PubMed ID: 15539462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexamerization of Geranylgeranylglyceryl Phosphate Synthase Ensures Structural Integrity and Catalytic Activity at High Temperatures.
    Linde M; Heyn K; Merkl R; Sterner R; Babinger P
    Biochemistry; 2018 Apr; 57(16):2335-2348. PubMed ID: 29600842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional assignment of an enzyme that catalyzes the synthesis of an archaea-type ether lipid in bacteria.
    Guldan H; Matysik FM; Bocola M; Sterner R; Babinger P
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8188-91. PubMed ID: 21761520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme Deviations from Expected Evolutionary Rates in Archaeal Protein Families.
    Petitjean C; Makarova KS; Wolf YI; Koonin EV
    Genome Biol Evol; 2017 Oct; 9(10):2791-2811. PubMed ID: 28985292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox.
    Brochier C; Forterre P; Gribaldo S
    Genome Biol; 2004; 5(3):R17. PubMed ID: 15003120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrupted genes in extremophilic archaea: mechanisms of gene expression in early organisms.
    Cobucci-Ponzano B; Rossi M; Moracci M
    Orig Life Evol Biosph; 2006 Dec; 36(5-6):487-92. PubMed ID: 17120127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.
    Villanueva L; Schouten S; Damsté JS
    Environ Microbiol; 2017 Jan; 19(1):54-69. PubMed ID: 27112361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.