These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17253095)
1. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Hong CO; Lee DK; Chung DY; Kim PJ Arch Environ Contam Toxicol; 2007 May; 52(4):496-502. PubMed ID: 17253095 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of phosphate fertilizer to immobilize cadmium in a field. Hong CO; Lee DK; Kim PJ Chemosphere; 2008 Feb; 70(11):2009-15. PubMed ID: 17977572 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming. Hong CO; Gutierrez J; Yun SW; Lee YB; Yu C; Kim PJ Arch Environ Contam Toxicol; 2009 Feb; 56(2):190-200. PubMed ID: 18704256 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Simon L Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964 [TBL] [Abstract][Full Text] [Related]
5. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Yang Y; Chen J; Huang Q; Tang S; Wang J; Hu P; Shao G Chemosphere; 2018 Feb; 193():547-556. PubMed ID: 29169130 [TBL] [Abstract][Full Text] [Related]
6. Interactions of humates and chlorides with cadmium drive soil cadmium chemistry and uptake by radish cultivars. Ondrasek G; Romic D; Rengel Z Sci Total Environ; 2020 Feb; 702():134887. PubMed ID: 31726343 [TBL] [Abstract][Full Text] [Related]
7. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation. Tsadilas CD; Karaivazoglou NA; Tsotsolis NC; Stamatiadis S; Samaras V Environ Pollut; 2005 Mar; 134(2):239-46. PubMed ID: 15589651 [TBL] [Abstract][Full Text] [Related]
8. Effects of liming on uptake of lead and cadmium by Raphanus sativa. Han DH; Lee JH Arch Environ Contam Toxicol; 1996 Nov; 31(4):488-93. PubMed ID: 8975821 [TBL] [Abstract][Full Text] [Related]
9. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming. Cunha KP; do Nascimento CW; Pimentel RM; Ferreira CP J Hazard Mater; 2008 Dec; 160(1):228-34. PubMed ID: 18417284 [TBL] [Abstract][Full Text] [Related]
10. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure. Shan H; Su S; Liu R; Li S Environ Sci Pollut Res Int; 2016 Aug; 23(15):15208-17. PubMed ID: 27098882 [TBL] [Abstract][Full Text] [Related]
11. Comparison of phosphate materials for immobilizing cadmium in soil. Hong CO; Chung DY; Lee DK; Kim PJ Arch Environ Contam Toxicol; 2010 Feb; 58(2):268-74. PubMed ID: 19633979 [TBL] [Abstract][Full Text] [Related]
12. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chen YX; Lin Q; Luo YM; He YF; Zhen SJ; Yu YL; Tian GM; Wong MH Chemosphere; 2003 Feb; 50(6):807-11. PubMed ID: 12688495 [TBL] [Abstract][Full Text] [Related]
13. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming. Huang Y; Sheng H; Zhou P; Zhang Y Ecotoxicol Environ Saf; 2020 Jan; 188():109903. PubMed ID: 31706567 [TBL] [Abstract][Full Text] [Related]
14. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils. Bolan N; Mahimairaja S; Kunhikrishnan A; Naidu R J Hazard Mater; 2013 Oct; 261():725-32. PubMed ID: 23177243 [TBL] [Abstract][Full Text] [Related]
15. Suppressive effects of thermal-treated oyster shells on cadmium and copper translocation in maize plants. Wang C; Alidoust D; Isoda A; Li M Environ Sci Pollut Res Int; 2017 Aug; 24(23):19347-19356. PubMed ID: 28669096 [TBL] [Abstract][Full Text] [Related]
16. The influence of liming on cadmium accumulation in rice grains via iron-reducing bacteria. Zhang Q; Zhang L; Liu T; Liu B; Huang D; Zhu Q; Xu C Sci Total Environ; 2018 Dec; 645():109-118. PubMed ID: 30016706 [TBL] [Abstract][Full Text] [Related]
17. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil. Zheng RL; Li HF; Jiang RF; Zhang FS Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549 [TBL] [Abstract][Full Text] [Related]
18. [Chemical forms of cadmium in industrial contaminated soil and its phytoremediation]. Tie M; Liang Y; Zang S; Pan W; Sun T; Li H Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):348-50. PubMed ID: 16706068 [TBL] [Abstract][Full Text] [Related]
19. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Huang Q; Xu Y; Liu Y; Qin X; Huang R; Liang X Environ Sci Pollut Res Int; 2018 Nov; 25(31):31175-31182. PubMed ID: 30187416 [TBL] [Abstract][Full Text] [Related]
20. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Bian R; Li L; Bao D; Zheng J; Zhang X; Zheng J; Liu X; Cheng K; Pan G Environ Sci Pollut Res Int; 2016 May; 23(10):10028-36. PubMed ID: 26865487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]