BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17253741)

  • 1. Series approach to modeling ion size effects for symmetric electrolytes in the diffuse double layer.
    Smagala TG; Fawcett WR
    J Phys Chem B; 2007 Feb; 111(6):1443-8. PubMed ID: 17253741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Series approach to modeling ion size effects for asymmetric electrolytes in the diffuse double layer.
    Smagala TG; Fawcett WR
    J Phys Chem B; 2007 Nov; 111(45):13075-81. PubMed ID: 17988076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ion size effects in the diffuse double layer with use of an integral equation approach.
    Fawcett WR; Smagala TG
    J Phys Chem B; 2005 Feb; 109(5):1930-5. PubMed ID: 16851177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the hypernetted chain approximation to the electrical double layer for 2:1 and 1:2 electrolytes.
    Fawcett WR; Henderson DJ
    J Phys Chem B; 2005 Dec; 109(47):22608-13. PubMed ID: 16853943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New developments in the theory of the diffuse double layer.
    Fawcett WR; Smagala TG
    Langmuir; 2006 Dec; 22(25):10635-42. PubMed ID: 17129041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar electric double layer for a restricted primitive model electrolyte at low temperatures.
    Bhuiyan LB; Outhwaite CW; Henderson D
    Langmuir; 2006 Dec; 22(25):10630-4. PubMed ID: 17129040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: an integral equation study.
    Guerrero-García GI; González-Tovar E; Lozada-Cassou M; de J Guevara-Rodríguez F
    J Chem Phys; 2005 Jul; 123(3):34703. PubMed ID: 16080751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the diffuse double layer at high electrolyte concentrations.
    Fawcett WR; Ryan PJ; Smagala TG
    J Phys Chem B; 2009 Oct; 113(43):14310-4. PubMed ID: 19845407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved version of the Kornyshev-Eigen-Wicke model for the diffuse double layer in concentrated electrolytes.
    Fawcett WR; Ryan PJ
    Phys Chem Chem Phys; 2010 Sep; 12(33):9816-21. PubMed ID: 20571688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model.
    Zhao H; dos Ramos MC; McCabe C
    J Chem Phys; 2007 Jun; 126(24):244503. PubMed ID: 17614560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study.
    Modak B; Patra CN; Ghosh SK; Das P
    J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of mixtures of symmetric and asymmetric electrolytes near discretely charged planar surfaces: a Monte Carlo study.
    Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2005 Aug; 123(5):054703. PubMed ID: 16108681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of salt solutions: exploring the validity of primitive models.
    Abbas Z; Ahlberg E; Nordholm S
    J Phys Chem B; 2009 Apr; 113(17):5905-16. PubMed ID: 19341250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of charge distribution in the reactant and product in double layer effects: construction of corrected Tafel plots.
    Rusanova MY; Tsirlina GA; Nazmutdinov RR; Fawcett WR
    J Phys Chem A; 2005 Feb; 109(7):1348-56. PubMed ID: 16833451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grand canonical Monte Carlo investigations of electrical double layer in molten salts.
    Lamperski S; Kłos J
    J Chem Phys; 2008 Oct; 129(16):164503. PubMed ID: 19045280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of electrical double-layer formation from mixtures of electrolytes inside nanopores.
    Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2008 Jan; 128(4):044705. PubMed ID: 18247979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing a modified model of the Poisson-Boltzmann theory that includes ion size effects through Monte Carlo simulations.
    Ibarra-Armenta JG; Martín-Molina A; Quesada-Pérez M
    Phys Chem Chem Phys; 2009 Jan; 11(2):309-16. PubMed ID: 19088986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ion properties on the equilibrium and transport properties of electrolyte solutions.
    Van Damme S; Dufrêche JF; Deconinck J
    J Phys Chem B; 2006 Jan; 110(2):1015-9. PubMed ID: 16471636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.