BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 17254685)

  • 1. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris.
    Arnold RE; Hodson ME
    Environ Pollut; 2007 Jul; 148(1):21-30. PubMed ID: 17254685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population level consequences of toxicological influences on individual growth and reproduction in Lumbricus rubellus (Lumbricidae, Oligochaeta).
    Klok C; de Roos AM
    Ecotoxicol Environ Saf; 1996 Mar; 33(2):118-27. PubMed ID: 8723748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cu tolerant population of the earthworm Dendrodrilus rubidus (Savigny, 1862) at Coniston Copper Mines, Cumbria, UK.
    Arnold RE; Hodson ME; Langdon CJ
    Environ Pollut; 2008 Apr; 152(3):713-22. PubMed ID: 17707108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.
    Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test.
    Langdon CJ; Hodson ME; Arnold RE; Black S
    Environ Pollut; 2005 Nov; 138(2):368-75. PubMed ID: 15951078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance to copper toxicity in populations of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from contaminated mine wastes.
    Langdon CJ; Piearce TG; Meharg AA; Semple KT
    Environ Toxicol Chem; 2001 Oct; 20(10):2336-41. PubMed ID: 11596768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of zinc exposure on earthworms, Lumbricus terrestris, in an artificial soil.
    Lev SM; Matthies N; Snodgrass JW; Casey RE; Ownby DR
    Bull Environ Contam Toxicol; 2010 Jun; 84(6):687-91. PubMed ID: 20431863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions.
    Mosleh YY; Paris-Palacios S; Couderchet M; Vernet G
    Environ Toxicol; 2003 Feb; 18(1):1-8. PubMed ID: 12539138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic speciation in the earthworms Lumbricus rubellus and Dendrodrilus rubidus.
    Langdon CJ; Piearce TG; Feldmann J; Semple KT; Meharg AA
    Environ Toxicol Chem; 2003 Jun; 22(6):1302-8. PubMed ID: 12785588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data.
    Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ
    Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inherited resistance to arsenate toxicity in two populations of Lumbricus rubellus.
    Langdon CJ; Piearce TG; Meharg AA; Semple KT
    Environ Toxicol Chem; 2003 Oct; 22(10):2344-8. PubMed ID: 14551998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model.
    Qiu H; Vijver MG; He E; Peijnenburg WJ
    Environ Sci Technol; 2013 May; 47(9):4796-803. PubMed ID: 23548049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives.
    Leduc F; Whalen JK; Sunahara GI
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):219-26. PubMed ID: 17559932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability and cellular effects of metals on Lumbricus terrestris inhabiting volcanic soils.
    Amaral A; Soto M; Cunha R; Marigómez I; Rodrigues A
    Environ Pollut; 2006 Jul; 142(1):103-8. PubMed ID: 16289775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-species interactions impact the accumulation of weathered 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) from soil.
    Kelsey JW; White JC
    Environ Pollut; 2005 Sep; 137(2):222-30. PubMed ID: 15913856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance and applicability of a simple earthworm biomarker of copper exposure. II. Validation and applicability under field conditions in a mesocosm experiment with Lumbricus rubellus.
    Svendsen C; Weeks JM
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):80-8. PubMed ID: 9056404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of the effect of earthworm Lumbricus terrestris on the speciation of heavy metals in soils].
    El Gharmali A; Rada A; El Meray M; Nejmeddine A
    Environ Technol; 2002 Jul; 23(7):775-80. PubMed ID: 12166420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead bioaccumulation in earthworms, Lumbricus terrestris, from exposure to lead compounds of differing solubility.
    Darling CT; Thomas VG
    Sci Total Environ; 2005 Jun; 346(1-3):70-80. PubMed ID: 15993683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.