These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 1725475)

  • 1. Determination of the site of tyrosine phosphorylation at the low picomole level by automated solid-phase sequence analysis.
    Aebersold R; Watts JD; Morrison HD; Bures EJ
    Anal Biochem; 1991 Nov; 199(1):51-60. PubMed ID: 1725475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence analysis of phosphotyrosine-containing peptides.
    Meyer HE; Hoffmann-Posorske E; Donella-Deana A; Korte H
    Methods Enzymol; 1991; 201():206-24. PubMed ID: 1719340
    [No Abstract]   [Full Text] [Related]  

  • 3. Purification and identification of tyrosine-phosphorylated proteins from B lymphocytes stimulated through the antigen receptor.
    Gold MR; Yungwirth T; Sutherland CL; Ingham RJ; Vianzon D; Chiu R; van Oostveen I; Morrison HD; Aebersold R
    Electrophoresis; 1994; 15(3-4):441-53. PubMed ID: 7519980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of phosphotyrosyl-containing phosphopeptides by solid-phase peptide synthesis.
    Zardeneta G; Chen DL; Weintraub ST; Klebe RJ
    Anal Biochem; 1990 Nov; 190(2):340-7. PubMed ID: 1705399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of protein phosphotyrosine content by changes in tyrosine kinase and protein phosphotyrosine phosphatase activities during induced granulocytic and monocytic differentiation of HL-60 leukemia cells.
    Frank DA; Sartorelli AC
    Biochem Biophys Res Commun; 1986 Oct; 140(1):440-7. PubMed ID: 2430565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels.
    Wettenhall RE; Aebersold RH; Hood LE
    Methods Enzymol; 1991; 201():186-99. PubMed ID: 1943764
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of phosphotyrosine residues in peptides by high performance liquid chromatography on-line derivative spectroscopy.
    Turck CW
    Pept Res; 1992; 5(3):156-60. PubMed ID: 1384821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitivity determination of tyrosine-phosphorylated peptides by on-line enzyme reactor and electrospray ionization mass spectrometry.
    Amankwa LN; Harder K; Jirik F; Aebersold R
    Protein Sci; 1995 Jan; 4(1):113-25. PubMed ID: 7539661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of phosphotyrosine-containing peptides and their use as substrates for protein tyrosine phosphatases.
    Ottinger EA; Shekels LL; Bernlohr DA; Barany G
    Biochemistry; 1993 Apr; 32(16):4354-61. PubMed ID: 7682846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase sequencing on the gas-phase sequencer.
    Sarin VK; Kim Y; Fox JL
    Anal Biochem; 1986 May; 154(2):542-51. PubMed ID: 2942055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of dityrosine, phosphotyrosine, phosphothreonine, and phosphoserine by high-performance liquid chromatography.
    Malencik DA; Zhao ZZ; Anderson SR
    Anal Biochem; 1990 Feb; 184(2):353-9. PubMed ID: 1691599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of phosphotyrosine residues during protein sequence analysis.
    Turck CW; Herrmann J; Escobedo JA; Williams LT
    Pept Res; 1991; 4(1):36-9. PubMed ID: 1724944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies into the identity of the sites of insulin-stimulated insulin receptor serine phosphorylation. Characterization of synthetic peptide substrates for the insulin-stimulated insulin receptor serine kinase.
    Carter WG; Asamoah KA; Sale GJ
    Biochemistry; 1995 Jul; 34(29):9488-99. PubMed ID: 7542920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct patterns of tyrosine phosphorylation during the life cycle of Trypanosoma brucei.
    Parsons M; Valentine M; Deans J; Schieven GL; Ledbetter JA
    Mol Biochem Parasitol; 1991 Apr; 45(2):241-8. PubMed ID: 1710035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonradioactive fluorescent gel-shift assay for the analysis of protein phosphatase and kinase activities toward protein-specific peptide substrates.
    Lutz MP; Pinon DI; Miller LJ
    Anal Biochem; 1994 Aug; 220(2):268-74. PubMed ID: 7978268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of lipocortin-1 by the epidermal growth factor receptor.
    Pepinsky RB
    Methods Enzymol; 1991; 198():260-72. PubMed ID: 1649952
    [No Abstract]   [Full Text] [Related]  

  • 17. Isocratic separation of PTH-amino acids at picomole level by reverse-phase HPLC in the presence of sodium dodecylsulfate.
    Tsunasawa S; Kondo J; Sakiyama F
    J Biochem; 1985 Feb; 97(2):701-4. PubMed ID: 4008475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of phosphorylation sites: use of the epidermal growth factor receptor.
    Heisermann GJ; Gill GN
    Methods Enzymol; 1991; 198():233-41. PubMed ID: 1857221
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemical characterization of tyrosine kinase and phosphotyrosine phosphatase activities of HL-60 leukemia cells.
    Frank DA; Sartorelli AC
    Cancer Res; 1988 Aug; 48(15):4299-306. PubMed ID: 2455595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).
    Donella-Deana A; Krinks MH; Ruzzene M; Klee C; Pinna LA
    Eur J Biochem; 1994 Jan; 219(1-2):109-17. PubMed ID: 7508382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.