These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17254773)

  • 1. Use of genetically modified mice to examine the skeletal anabolic activity of vitamin D.
    Goltzman D
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):587-91. PubMed ID: 17254773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous PTH and endogenous 1,25-dihydroxyvitamin D are complementary in inducing an anabolic effect on bone.
    Samadfam R; Xia Q; Miao D; Hendy GN; Goltzman D
    J Bone Miner Res; 2008 Aug; 23(8):1257-66. PubMed ID: 18348699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Endocrinology; 2006 Oct; 147(10):4801-10. PubMed ID: 16857747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Hum Mol Genet; 2005 Jun; 14(11):1515-28. PubMed ID: 15843402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium and of the Vitamin D system on skeletal and calcium homeostasis: lessons from genetic models.
    Goltzman D; Miao D; Panda DK; Hendy GN
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):485-9. PubMed ID: 15225825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous PTH-related protein and PTH improve mineral and skeletal status in 25-hydroxyvitamin D-1alpha-hydroxylase and PTH double knockout mice.
    Xue Y; Zhang Z; Karaplis AC; Hendy GN; Goltzman D; Miao D
    J Bone Miner Res; 2005 Oct; 20(10):1766-77. PubMed ID: 16160734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferences from genetically modified mouse models on the skeletal actions of vitamin D.
    Goltzman D
    J Steroid Biochem Mol Biol; 2015 Apr; 148():219-24. PubMed ID: 25237033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis.
    Panda DK; Miao D; Bolivar I; Li J; Huo R; Hendy GN; Goltzman D
    J Biol Chem; 2004 Apr; 279(16):16754-66. PubMed ID: 14739296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis.
    Lieben L; Carmeliet G
    Bone; 2013 Jun; 54(2):237-43. PubMed ID: 23072922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal hypervitaminosis D reduces fetal bone mass and mineral acquisition and leads to neonatal lethality.
    Lieben L; Stockmans I; Moermans K; Carmeliet G
    Bone; 2013 Nov; 57(1):123-31. PubMed ID: 23895994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of vitamin D in bone.
    Goltzman D
    Histochem Cell Biol; 2018 Apr; 149(4):305-312. PubMed ID: 29435763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone.
    Goltzman D
    Arch Biochem Biophys; 2008 May; 473(2):218-24. PubMed ID: 18358824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcemic actions of vitamin D: effects on the intestine, kidney and bone.
    Lieben L; Carmeliet G; Masuyama R
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):561-72. PubMed ID: 21872798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts.
    Masuyama R; Stockmans I; Torrekens S; Van Looveren R; Maes C; Carmeliet P; Bouillon R; Carmeliet G
    J Clin Invest; 2006 Dec; 116(12):3150-9. PubMed ID: 17099775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture.
    Christiansen P
    APMIS Suppl; 2001; (102):1-52. PubMed ID: 11419022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin D action : Lessons learned from genetic mouse models.
    Goltzman D
    Ann N Y Acad Sci; 2010 Mar; 1192():145-52. PubMed ID: 20392230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D physiology.
    Lips P
    Prog Biophys Mol Biol; 2006 Sep; 92(1):4-8. PubMed ID: 16563471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25(OH)2 vitamin D.
    Horwitz MJ; Tedesco MB; Sereika SM; Syed MA; Garcia-Ocaña A; Bisello A; Hollis BW; Rosen CJ; Wysolmerski JJ; Dann P; Gundberg C; Stewart AF
    J Bone Miner Res; 2005 Oct; 20(10):1792-803. PubMed ID: 16160737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.