BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17254796)

  • 21. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
    Mayer ML
    Neuron; 2005 Feb; 45(4):539-52. PubMed ID: 15721240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of functional kainate and AMPA receptors in developing lateral superior olive neurons of the rat.
    Vitten H; Reusch M; Friauf E; Löhrke S
    J Neurobiol; 2004 Jun; 59(3):272-88. PubMed ID: 15146545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons.
    Castillo PE; Malenka RC; Nicoll RA
    Nature; 1997 Jul; 388(6638):182-6. PubMed ID: 9217159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of Kv4.2 K+ currents by neuronal interleukin-16, a PDZ domain-containing protein expressed in the hippocampus and cerebellum.
    Fenster CP; Fenster SD; Leahy HP; Kurschner C; Blundon JA
    Brain Res; 2007 Aug; 1162():19-31. PubMed ID: 17618606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice.
    Mulle C; Sailer A; Pérez-Otaño I; Dickinson-Anson H; Castillo PE; Bureau I; Maron C; Gage FH; Mann JR; Bettler B; Heinemann SF
    Nature; 1998 Apr; 392(6676):601-5. PubMed ID: 9580260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression and function of kainate receptors in the rat olfactory bulb.
    Davila NG; Houpt TA; Trombley PQ
    Synapse; 2007 May; 61(5):320-34. PubMed ID: 17318880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BTB-Kelch proteins and ubiquitination of kainate receptors.
    Marshall J; Blair LA; Singer JD
    Adv Exp Med Biol; 2011; 717():115-25. PubMed ID: 21713671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The BTB/kelch protein, KRIP6, modulates the interaction of PICK1 with GluR6 kainate receptors.
    Laezza F; Wilding TJ; Sequeira S; Craig AM; Huettner JE
    Neuropharmacology; 2008 Dec; 55(7):1131-9. PubMed ID: 18692513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors.
    Vukolova MN; Yen LY; Khmyz MI; Sobolevsky AI; Yelshanskaya MV
    Front Cell Dev Biol; 2023; 11():1252953. PubMed ID: 38033869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure, Function, and Regulation of the Kainate Receptor.
    Dhingra S; Yadav J; Kumar J
    Subcell Biochem; 2022; 99():317-350. PubMed ID: 36151381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome.
    Lyu S; Xing H; DeAndrade MP; Perez PD; Yokoi F; Febo M; Walters AS; Li Y
    Neuroscience; 2020 Aug; 440():85-96. PubMed ID: 32446853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monoallelic Mutations in the Translation Initiation Codon of KLHL24 Cause Skin Fragility.
    He Y; Maier K; Leppert J; Hausser I; Schwieger-Briel A; Weibel L; Theiler M; Kiritsi D; Busch H; Boerries M; Hannula-Jouppi K; Heikkilä H; Tasanen K; Castiglia D; Zambruno G; Has C
    Am J Hum Genet; 2016 Dec; 99(6):1395-1404. PubMed ID: 27889062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield.
    Anazi S; Maddirevula S; Faqeih E; Alsedairy H; Alzahrani F; Shamseldin HE; Patel N; Hashem M; Ibrahim N; Abdulwahab F; Ewida N; Alsaif HS; Al Sharif H; Alamoudi W; Kentab A; Bashiri FA; Alnaser M; AlWadei AH; Alfadhel M; Eyaid W; Hashem A; Al Asmari A; Saleh MM; AlSaman A; Alhasan KA; Alsughayir M; Al Shammari M; Mahmoud A; Al-Hassnan ZN; Al-Husain M; Osama Khalil R; Abd El Meguid N; Masri A; Ali R; Ben-Omran T; El Fishway P; Hashish A; Ercan Sencicek A; State M; Alazami AM; Salih MA; Altassan N; Arold ST; Abouelhoda M; Wakil SM; Monies D; Shaheen R; Alkuraya FS
    Mol Psychiatry; 2017 Apr; 22(4):615-624. PubMed ID: 27431290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Smoking Status and Intensity on Discovery of Blood Pressure Loci Through Gene-Smoking Interactions.
    Basson J; Sung YJ; Fuentes LL; Schwander K; Cupples LA; Rao DC
    Genet Epidemiol; 2015 Sep; 39(6):480-488. PubMed ID: 25940791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trafficking of kainate receptors.
    Pahl S; Tapken D; Haering SC; Hollmann M
    Membranes (Basel); 2014 Aug; 4(3):565-95. PubMed ID: 25141211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins.
    Sun C; Qiao H; Zhou Q; Wang Y; Wu Y; Zhou Y; Li Y
    J Biol Chem; 2013 Aug; 288(34):24676-90. PubMed ID: 23861400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function.
    Copits BA; Swanson GT
    Nat Rev Neurosci; 2012 Oct; 13(10):675-86. PubMed ID: 22948074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neto1 and Neto2: auxiliary subunits that determine key properties of native kainate receptors.
    Tomita S; Castillo PE
    J Physiol; 2012 May; 590(10):2217-23. PubMed ID: 22431337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defined criteria for auxiliary subunits of glutamate receptors.
    Yan D; Tomita S
    J Physiol; 2012 Jan; 590(1):21-31. PubMed ID: 21946847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dysregulated phosphorylation of Ca(2+) /calmodulin-dependent protein kinase II-α in the hippocampus of subjects with mild cognitive impairment and Alzheimer's disease.
    Reese LC; Laezza F; Woltjer R; Taglialatela G
    J Neurochem; 2011 Nov; 119(4):791-804. PubMed ID: 21883216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.