These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17254980)

  • 1. Thermally responsive polymeric hydrogel brushes: synthesis, physical properties and use for the culture of chondrocytes.
    Collett J; Crawford A; Hatton PV; Geoghegan M; Rimmer S
    J R Soc Interface; 2007 Feb; 4(12):117-26. PubMed ID: 17254980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally-reversible gel for 3-D cell culture of chondrocytes.
    Jasionowski M; Krzyminski K; Chrisler W; Markille LM; Morris J; Gutowska A
    J Mater Sci Mater Med; 2004 May; 15(5):575-82. PubMed ID: 15386965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer.
    Cho JH; Kim SH; Park KD; Jung MC; Yang WI; Han SW; Noh JY; Lee JW
    Biomaterials; 2004 Nov; 25(26):5743-51. PubMed ID: 15147820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus.
    Aufderheide AC; Athanasiou KA
    Tissue Eng; 2005; 11(7-8):1095-104. PubMed ID: 16144445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of three-dimensional cell constructs using temperature-responsive hydrogel.
    Sasaki J; Asoh TA; Matsumoto T; Egusa H; Sohmura T; Alsberg E; Akashi M; Yatani H
    Tissue Eng Part A; 2010 Aug; 16(8):2497-504. PubMed ID: 20218862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering.
    Ng SS; Su K; Li C; Chan-Park MB; Wang DA; Chan V
    Acta Biomater; 2012 Jan; 8(1):244-52. PubMed ID: 21906699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells.
    Chen JP; Cheng TH
    Macromol Biosci; 2006 Dec; 6(12):1026-39. PubMed ID: 17128421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes.
    Huang X; Zhang Y; Donahue HJ; Lowe TL
    Tissue Eng; 2007 Nov; 13(11):2645-52. PubMed ID: 17683245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation.
    Hu X; Li D; Gao C
    Biotechnol J; 2011 Nov; 6(11):1388-96. PubMed ID: 21751389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous redifferentiation of dedifferentiated human articular chondrocytes on hydrogel surfaces.
    Yang JJ; Chen YM; Liu JF; Kurokawa T; Gong JP
    Tissue Eng Part A; 2010 Aug; 16(8):2529-40. PubMed ID: 20233009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and function of ovine articular cartilage chondrocytes in 3-d hydrogel culture.
    Schagemann JC; Mrosek EH; Landers R; Kurz H; Erggelet C
    Cells Tissues Organs; 2006; 182(2):89-97. PubMed ID: 16804299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioimaging of dexamethasone and TGF beta-1 and its biological activities of chondrogenic differentiation in hydrogel constructs.
    Na K; Kim S; Sun BK; Woo DG; Yang HN; Chung HM; Park KH
    J Biomed Mater Res A; 2008 Nov; 87(2):283-9. PubMed ID: 18181092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of poly(L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes.
    Costa Martínez E; Escobar Ivirico JL; Muñoz Criado I; Gómez Ribelles JL; Monleón Pradas M; Salmerón Sánchez M
    J Mater Sci Mater Med; 2007 Aug; 18(8):1627-32. PubMed ID: 17483895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-density cultures of bovine chondrocytes: effects of scaffold material and culture system.
    Hu JC; Athanasiou KA
    Biomaterials; 2005 May; 26(14):2001-12. PubMed ID: 15576174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoreversible hydrogel scaffolds for articular cartilage engineering.
    Fisher JP; Jo S; Mikos AG; Reddi AH
    J Biomed Mater Res A; 2004 Nov; 71(2):268-74. PubMed ID: 15368220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the hydrophobic basal layer of thermoresponsive block co-polymer brushes on thermally-induced cell sheet harvest.
    Matsuzaka N; Takahashi H; Nakayama M; Kikuchi A; Okano T
    J Biomater Sci Polym Ed; 2012; 23(10):1301-14. PubMed ID: 21722425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.