BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 17254982)

  • 1. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.
    Chowell G; Nishiura H; Bettencourt LM
    J R Soc Interface; 2007 Feb; 4(12):155-66. PubMed ID: 17254982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland.
    Chowell G; Ammon CE; Hengartner NW; Hyman JM
    Math Biosci Eng; 2007 Jul; 4(3):457-70. PubMed ID: 17658935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China.
    Yang F; Yuan L; Tan X; Huang C; Feng J
    Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Transmissibility and severity of the pandemic influenza A (H1N1) 2009 virus in Spain].
    Simón Méndez L; de Mateo Ontañón S; Larrauri Cámara A; Jiménez-Jorge S; Vaqué Rafart J; Pérez Hoyos S;
    Gac Sanit; 2011; 25(4):296-302. PubMed ID: 21543138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19.
    Nishiura H
    Theor Biol Med Model; 2007 Jun; 4():20. PubMed ID: 17547753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimates of the reproduction numbers of Spanish influenza using morbidity data.
    Vynnycky E; Trindall A; Mangtani P
    Int J Epidemiol; 2007 Aug; 36(4):881-9. PubMed ID: 17517812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland.
    Chowell G; Ammon CE; Hengartner NW; Hyman JM
    Vaccine; 2006 Nov; 24(44-46):6747-50. PubMed ID: 16782243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Epidemiological characteristics of the influenza pandemic (H1N1) 2009 in Germany based on the mandatory notification of cases].
    Buda S; Köpke K; Haas W
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2010 Dec; 53(12):1223-30. PubMed ID: 21161471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.
    Rios-Doria D; Chowell G
    J Theor Biol; 2009 Dec; 261(4):584-92. PubMed ID: 19703472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009.
    Nishiura H; Chowell G; Safan M; Castillo-Chavez C
    Theor Biol Med Model; 2010 Jan; 7():1. PubMed ID: 20056004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions.
    Chowell G; Ammon CE; Hengartner NW; Hyman JM
    J Theor Biol; 2006 Jul; 241(2):193-204. PubMed ID: 16387331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases.
    Chong KC; Zee BCY; Wang MH
    Travel Med Infect Dis; 2018; 23():80-86. PubMed ID: 29653203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009.
    Boëlle PY; Bernillon P; Desenclos JC
    Euro Surveill; 2009 May; 14(19):. PubMed ID: 19442402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The introduction of the SENTINEL influenza surveillance system in Poland--experiences and lessons learned from the first three epidemic seasons.
    Romanowska M; Nowak I; Rybicka K; Brydak LB
    Euro Surveill; 2008 Feb; 13(8):. PubMed ID: 18445411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An estimate of the incidence of influenza-like illness during the influenza pandemic of 2009.
    Bellido-Blasco JB; Pardo-Serrano F; Ballester-Rodríguez I; Arnedo-Pena A; Tirado-Balaguer MD; Romeu-García MÁ; Silvestre-Silvestre E; Meseguer-Ferrer N; Herrero-Carot C; Caylà-Buqueres JA
    Arch Bronconeumol; 2015 Aug; 51(8):373-8. PubMed ID: 25287416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QFLU: new influenza monitoring in UK primary care to support pandemic influenza planning.
    Hippisley-Cox J; Smith S; Smith G; Porter A; Heaps M; Holland R; Fenty J; Harcourt S; George R; Charlett A; Pebody RG; Painter M
    Euro Surveill; 2006 Jun; 11(6):E060622.4. PubMed ID: 16819130
    [No Abstract]   [Full Text] [Related]  

  • 17. Epidemiology and transmission dynamics of the 1918-19 pandemic influenza in Florence, Italy.
    Rizzo C; Ajelli M; Merler S; Pugliese A; Barbetta I; Salmaso S; Manfredi P
    Vaccine; 2011 Jul; 29 Suppl 2():B27-32. PubMed ID: 21757100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling seasonal influenza in Israel.
    Barnea O; Yaari R; Katriel G; Stone L
    Math Biosci Eng; 2011 Apr; 8(2):561-73. PubMed ID: 21631146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the reproduction number of dengue fever from spatial epidemic data.
    Chowell G; Diaz-Dueñas P; Miller JC; Alcazar-Velazco A; Hyman JM; Fenimore PW; Castillo-Chavez C
    Math Biosci; 2007 Aug; 208(2):571-89. PubMed ID: 17303188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian Outbreak Detection Method for Influenza-Like Illness.
    García YE; Christen JA; Capistrán MA
    Biomed Res Int; 2015; 2015():751738. PubMed ID: 26425552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.