These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17254990)

  • 21. Drivers of growth for Atlantic cod (Gadus morhua L.) in Icelandic waters - A Bayesian approach to determine spatiotemporal variation and its causes.
    Frater PN; Hrafnkelsson B; Elvarsson BT; Stefansson G
    J Fish Biol; 2019 Aug; 95(2):401-410. PubMed ID: 31115911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recruitment variability in North Atlantic cod and match-mismatch dynamics.
    Kristiansen T; Drinkwater KF; Lough RG; Sundby S
    PLoS One; 2011 Mar; 6(3):e17456. PubMed ID: 21408215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic insights into the effects of climate change on larval cod.
    Kristiansen T; Stock C; Drinkwater KF; Curchitser EN
    Glob Chang Biol; 2014 May; 20(5):1559-84. PubMed ID: 24343971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea.
    Koenigstein S; Dahlke FT; Stiasny MH; Storch D; Clemmesen C; Pörtner HO
    Glob Chang Biol; 2018 Jan; 24(1):526-535. PubMed ID: 28755499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecological forecasting under climate change: the case of Baltic cod.
    Lindegren M; Möllmann C; Nielsen A; Brander K; MacKenzie BR; Stenseth NC
    Proc Biol Sci; 2010 Jul; 277(1691):2121-30. PubMed ID: 20236982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constant proportion harvest policies: dynamic implications in the Pacific halibut and Atlantic cod fisheries.
    Yakubu AA; Li N; Conrad JM; Zeeman ML
    Math Biosci; 2011 Jul; 232(1):66-77. PubMed ID: 21549719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intra-annual variation in feeding of Atlantic cod Gadus morhua: the importance of ephemeral prey bursts.
    Grønkjaer P; Ottosen R; Joensen T; Reeve L; Nielsen EE; Hedeholm R
    J Fish Biol; 2020 Nov; 97(5):1507-1519. PubMed ID: 32875592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod.
    Opdal AF; Jørgensen C
    Glob Chang Biol; 2015 Apr; 21(4):1521-30. PubMed ID: 25336028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial anatomy of species survival: effects of predation and climate-driven environmental variability.
    Ciannelli L; Dingsør GE; Bogstad B; Ottersen G; Chan KS; Gjøsaeter H; Stiansen JE; Stenseth NC
    Ecology; 2007 Mar; 88(3):635-46. PubMed ID: 17503592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resilience and tipping points of an exploited fish population over six decades.
    Vasilakopoulos P; Marshall CT
    Glob Chang Biol; 2015 May; 21(5):1834-47. PubMed ID: 25545249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined effects of fishing and oil spills on marine fish: Role of stock demographic structure for offspring overlap with oil.
    Stige LC; Ottersen G; Yaragina NA; Vikebø FB; Stenseth NC; Langangen Ø
    Mar Pollut Bull; 2018 Apr; 129(1):336-342. PubMed ID: 29680556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of spawning migrations: state dependence and fishing-induced changes.
    Jørgensen C; Dunlop ES; Opdal AF; Fiksen O
    Ecology; 2008 Dec; 89(12):3436-48. PubMed ID: 19137949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Reproductive potential of the Eastern Baltic cod Gadus morhua callarias L. population].
    Dmitrieva MA; Karpushevskiĭ IV
    Ontogenez; 2011; 42(3):183-90. PubMed ID: 21786651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100.
    Hänsel MC; Schmidt JO; Stiasny MH; Stöven MT; Voss R; Quaas MF
    PLoS One; 2020; 15(4):e0231589. PubMed ID: 32320411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental toxicology: population modeling of cod larvae shows high sensitivity to loss of zooplankton prey.
    Stige LC; Ottersen G; Hjermann DØ; Dalpadado P; Jensen LK; Stenseth NC
    Mar Pollut Bull; 2011 Feb; 62(2):395-8. PubMed ID: 21194716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catastrophic dynamics limit Atlantic cod recovery.
    Sguotti C; Otto SA; Frelat R; Langbehn TJ; Ryberg MP; Lindegren M; Durant JM; Chr Stenseth N; Möllmann C
    Proc Biol Sci; 2019 Mar; 286(1898):20182877. PubMed ID: 30862289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fisheries change spawning ground distribution of northeast Arctic cod.
    Opdal AF
    Biol Lett; 2010 Apr; 6(2):261-4. PubMed ID: 19923140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influences of potential predictor variables on gastric evacuation in Atlantic cod Gadus morhua feeding on fish prey: parameterization of a generic model.
    Andersen NG
    J Fish Biol; 2012 Mar; 80(3):595-612. PubMed ID: 22380555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stock collapse and its effect on species interactions: Cod and herring in the Norwegian-Barents Seas system as an example.
    Durant JM; Aarvold L; Langangen Ø
    Ecol Evol; 2021 Dec; 11(23):16993-17004. PubMed ID: 34938487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem.
    Ellingsen KE; Anderson MJ; Shackell NL; Tveraa T; Yoccoz NG; Frank KT
    J Anim Ecol; 2015 Sep; 84(5):1242-52. PubMed ID: 25981204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.