BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 17255168)

  • 1. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes.
    Suchyna TM; Sachs F
    J Physiol; 2007 May; 581(Pt 1):369-87. PubMed ID: 17255168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse.
    Franco-Obregón A; Lansman JB
    J Physiol; 2002 Mar; 539(Pt 2):391-407. PubMed ID: 11882673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression.
    Teichmann MD; Wegner FV; Fink RH; Chamberlain JS; Launikonis BS; Martinac B; Friedrich O
    PLoS One; 2008; 3(11):e3644. PubMed ID: 18982068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice.
    Franco-Obregón A; Lansman JB
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):299-309. PubMed ID: 7537813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy.
    Lansman JB; Franco-Obregón A
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):649-56. PubMed ID: 16789935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse.
    Yeung EW; Whitehead NP; Suchyna TM; Gottlieb PA; Sachs F; Allen DG
    J Physiol; 2005 Jan; 562(Pt 2):367-80. PubMed ID: 15528244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers.
    Vandebrouck C; Martin D; Colson-Van Schoor M; Debaix H; Gailly P
    J Cell Biol; 2002 Sep; 158(6):1089-96. PubMed ID: 12235126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium entry through stretch-inactivated ion channels in mdx myotubes.
    Franco A; Lansman JB
    Nature; 1990 Apr; 344(6267):670-3. PubMed ID: 1691450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caveolae regulation of mechanosensitive channel function in myotubes.
    Huang H; Bae C; Sachs F; Suchyna TM
    PLoS One; 2013; 8(8):e72894. PubMed ID: 24023653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.
    Henríquez-Olguín C; Altamirano F; Valladares D; López JR; Allen PD; Jaimovich E
    Biochim Biophys Acta; 2015 Jul; 1852(7):1410-9. PubMed ID: 25857619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers.
    Kumar A; Khandelwal N; Malya R; Reid MB; Boriek AM
    FASEB J; 2004 Jan; 18(1):102-13. PubMed ID: 14718391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered nuclear dynamics in MDX myofibers.
    Iyer SR; Shah SB; Valencia AP; Schneider MF; Hernández-Ochoa EO; Stains JP; Blemker SS; Lovering RM
    J Appl Physiol (1985); 2017 Mar; 122(3):470-481. PubMed ID: 27979987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: col6a1-/- and mdx.
    Canato M; Dal Maschio M; Sbrana F; Raiteri R; Reggiani C; Vassanelli S; Megighian A
    J Biomed Biotechnol; 2010; 2010():981945. PubMed ID: 20396399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-induced slow activation and deactivation of mechanosensitive channels in Xenopus oocytes.
    Silberberg SD; Magleby KL
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):551-69. PubMed ID: 9457635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts.
    Sbrana F; Sassoli C; Meacci E; Nosi D; Squecco R; Paternostro F; Tiribilli B; Zecchi-Orlandini S; Francini F; Formigli L
    Am J Physiol Cell Physiol; 2008 Jul; 295(1):C160-72. PubMed ID: 18480300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle.
    Vasquez I; Tan N; Boonyasampant M; Koppitch KA; Lansman JB
    J Physiol; 2012 Dec; 590(23):6167-85. PubMed ID: 22966155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysics and structure of the patch and the gigaseal.
    Suchyna TM; Markin VS; Sachs F
    Biophys J; 2009 Aug; 97(3):738-47. PubMed ID: 19651032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels.
    Mallouk N; Jacquemond V; Allard B
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4950-5. PubMed ID: 10781103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utrophin suppresses low frequency oscillations and coupled gating of mechanosensitive ion channels in dystrophic skeletal muscle.
    Lansman JB
    Channels (Austin); 2015; 9(3):145-60. PubMed ID: 25941878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase.
    Johnson BD; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):4191-6. PubMed ID: 15753322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.