BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17255945)

  • 1. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Robinson NP; Blood KA; McCallum SA; Edwards PA; Bell SD
    EMBO J; 2007 Feb; 26(3):816-24. PubMed ID: 17255945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of physical and functional interactions between eukaryote-like Orc1/Cdc6 proteins and Y-family DNA polymerase in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Yang S; Gong H; Zhang L; Liu Y; He ZG
    Biochem Biophys Res Commun; 2010 Jun; 396(3):755-62. PubMed ID: 20457125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus.
    Contursi P; Pisani FM; Grigoriev A; Cannio R; Bartolucci S; Rossi M
    Extremophiles; 2004 Oct; 8(5):385-91. PubMed ID: 15480865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three eukaryote-like Orc1/Cdc6 proteins functionally interact and mutually regulate their activities of binding to the replication origin in the hyperthermophilic archaeon Sulfolobus solfataricus P2.
    Wang J; Jiang PX; Feng H; Feng Y; He ZG
    Biochem Biophys Res Commun; 2007 Nov; 363(1):63-70. PubMed ID: 17825793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei.
    Schubert V; Kim YM; Berr A; Fuchs J; Meister A; Marschner S; Schubert I
    Mol Genet Genomics; 2007 Aug; 278(2):167-76. PubMed ID: 17522894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on modulating the loading of the MCM helicase onto the origins of the hyperthermophilic archaeon Sulfolobus solfataricus P2.
    Jiang PX; Wang J; Feng Y; He ZG
    Biochem Biophys Res Commun; 2007 Sep; 361(3):651-8. PubMed ID: 17673179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation.
    He ZG; Feng Y; Wang J; Jiang PX
    Arch Biochem Biophys; 2008 Mar; 471(2):176-83. PubMed ID: 18237540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae.
    Shimada K; Gasser SM
    Cell; 2007 Jan; 128(1):85-99. PubMed ID: 17218257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the pheromone-responsive MAP kinase drives haploid cells to undergo ectopic meiosis with normal telomere clustering and sister chromatid segregation in fission yeast.
    Yamamoto TG; Chikashige Y; Ozoe F; Kawamukai M; Hiraoka Y
    J Cell Sci; 2004 Aug; 117(Pt 17):3875-86. PubMed ID: 15265989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous gene expression in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Angelov A; Liebl W
    Methods Mol Biol; 2010; 668():109-16. PubMed ID: 20830559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the functional interactions between archaeal eukaryote-like Cdc6/Orc1 proteins on the replication origin by two different mechanisms.
    He ZG; Feng Y; Jiang PX; Wang J
    Biochem Biophys Res Commun; 2008 Feb; 366(4):1089-95. PubMed ID: 18155660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is chromatin remodeling required to build sister-chromatid cohesion?
    Riedel CG; Gregan J; Gruber S; Nasmyth K
    Trends Biochem Sci; 2004 Aug; 29(8):389-92. PubMed ID: 15288867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sister chromatid exchange assessment by chromosome orientation-fluorescence in situ hybridization on the bovine sex chromosomes and autosomes 16 and 26.
    Revay T; King WA
    Cytogenet Genome Res; 2012; 136(2):107-16. PubMed ID: 22286126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a putative acetoin dehydrogenase complex in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Payne KA; Hough DW; Danson MJ
    FEBS Lett; 2010 Mar; 584(6):1231-4. PubMed ID: 20171216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome cohesion - rings, knots, orcs and fellowship.
    Díaz-Martínez LA; Giménez-Abián JF; Clarke DJ
    J Cell Sci; 2008 Jul; 121(Pt 13):2107-14. PubMed ID: 18565823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation.
    Fröls S; Ajon M; Wagner M; Teichmann D; Zolghadr B; Folea M; Boekema EJ; Driessen AJ; Schleper C; Albers SV
    Mol Microbiol; 2008 Nov; 70(4):938-52. PubMed ID: 18990182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome instability induced by a single defined sister chromatid fusion.
    Kagaya K; Noma-Takayasu N; Yamamoto I; Tashiro S; Ishikawa F; Hayashi MT
    Life Sci Alliance; 2020 Dec; 3(12):. PubMed ID: 33106324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Albers SV; Jonuscheit M; Dinkelaker S; Urich T; Kletzin A; Tampé R; Driessen AJ; Schleper C
    Appl Environ Microbiol; 2006 Jan; 72(1):102-11. PubMed ID: 16391031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2.
    Barry RC; Young MJ; Stedman KM; Dratz EA
    Electrophoresis; 2006 Jul; 27(14):2970-83. PubMed ID: 16721906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome orientation fluorescence in situ hybridization to study sister chromatid segregation in vivo.
    Falconer E; Chavez E; Henderson A; Lansdorp PM
    Nat Protoc; 2010 Jul; 5(7):1362-77. PubMed ID: 20595964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.