These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 17256517)
1. Using nitrogen isotope fractionation to assess abiotic reduction of nitroaromatic compounds. Hartenbach A; Hofstetter TB; Berg M; Bolotin J; Schwarzenbach RP Environ Sci Technol; 2006 Dec; 40(24):7710-6. PubMed ID: 17256517 [TBL] [Abstract][Full Text] [Related]
2. Variability of nitrogen isotope fractionation during the reduction of nitroaromatic compounds with dissolved reductants. Hartenbach AE; Hofstetter TB; Aeschbacher M; Sander M; Kim D; Strathmann TJ; Arnold WA; Cramer CJ; Schwarzenbach RP Environ Sci Technol; 2008 Nov; 42(22):8352-9. PubMed ID: 19068817 [TBL] [Abstract][Full Text] [Related]
3. Assessing iron-mediated oxidation of toluene and reduction of nitroaromatic contaminants in anoxic environments using compound-specific isotope analysis. Tobler NB; Hofstetter TB; Schwarzenbach RP Environ Sci Technol; 2007 Nov; 41(22):7773-80. PubMed ID: 18075087 [TBL] [Abstract][Full Text] [Related]
4. Substituent effects on nitrogen isotope fractionation during abiotic reduction of nitroaromatic compounds. Hofstetter TB; Neumann A; Arnold WA; Hartenbach AE; Bolotin J; Cramer CJ; Schwarzenbach RP Environ Sci Technol; 2008 Mar; 42(6):1997-2003. PubMed ID: 18409627 [TBL] [Abstract][Full Text] [Related]
5. Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction. Berens MJ; Ulrich BA; Strehlau JH; Hofstetter TB; Arnold WA Environ Sci Process Impacts; 2019 Jan; 21(1):51-62. PubMed ID: 30484795 [TBL] [Abstract][Full Text] [Related]
6. Isotope fractionation associated with the simultaneous biodegradation of multiple nitrophenol isomers by Pseudomonas putida B2. Wijker RS; Zeyer J; Hofstetter TB Environ Sci Process Impacts; 2017 May; 19(5):775-784. PubMed ID: 28470308 [TBL] [Abstract][Full Text] [Related]
7. Carbon and nitrogen stable isotope fractionation during abiotic hydrolysis of pesticides. Masbou J; Drouin G; Payraudeau S; Imfeld G Chemosphere; 2018 Dec; 213():368-376. PubMed ID: 30241081 [TBL] [Abstract][Full Text] [Related]
8. Abiotic reduction of nitroaromatic contaminants by iron(II) complexes with organothiol ligands. Naka D; Kim D; Carbonaro RF; Strathmann TJ Environ Toxicol Chem; 2008 Jun; 27(6):1257-66. PubMed ID: 18211125 [TBL] [Abstract][Full Text] [Related]
9. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Hofstetter TB; Neumann A; Schwarzenbach RP Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357 [TBL] [Abstract][Full Text] [Related]
10. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants. Pati SG; Kohler HP; Pabis A; Paneth P; Parales RE; Hofstetter TB Environ Sci Technol; 2016 Jul; 50(13):6708-16. PubMed ID: 26895026 [TBL] [Abstract][Full Text] [Related]
11. Isotope fractionation associated with the biodegradation of 2- and 4-nitrophenols via monooxygenation pathways. Wijker RS; Kurt Z; Spain JC; Bolotin J; Zeyer J; Hofstetter TB Environ Sci Technol; 2013 Dec; 47(24):14185-93. PubMed ID: 24266668 [TBL] [Abstract][Full Text] [Related]
12. Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine. Pati SG; Shin K; Skarpeli-Liati M; Bolotin J; Eustis SN; Spain JC; Hofstetter TB Environ Sci Technol; 2012 Nov; 46(21):11844-53. PubMed ID: 23017098 [TBL] [Abstract][Full Text] [Related]
13. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Neumann A; Hofstetter TB; Lüssi M; Cirpka OA; Petit S; Schwarzenbach RP Environ Sci Technol; 2008 Nov; 42(22):8381-7. PubMed ID: 19068821 [TBL] [Abstract][Full Text] [Related]
14. Isotope effects of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitrobenzene dioxygenase. Pati SG; Kohler HP; Bolotin J; Parales RE; Hofstetter TB Environ Sci Technol; 2014 Sep; 48(18):10750-9. PubMed ID: 25101486 [TBL] [Abstract][Full Text] [Related]
15. Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex. Gao Y; Zhong S; Torralba-Sanchez TL; Tratnyek PG; Weber EJ; Chen Y; Zhang H Water Res; 2021 Mar; 192():116843. PubMed ID: 33494041 [TBL] [Abstract][Full Text] [Related]
16. Using compound-specific isotope analysis to assess biodegradation of nitroaromatic explosives in the subsurface. Wijker RS; Bolotin J; Nishino SF; Spain JC; Hofstetter TB Environ Sci Technol; 2013 Jul; 47(13):6872-83. PubMed ID: 23547531 [TBL] [Abstract][Full Text] [Related]
17. Reduction rate constants for nitroaromatic compounds estimated from adiabatic electron affinities. Phillips KL; Chiu PC; Sandler SI Environ Sci Technol; 2010 Oct; 44(19):7431-6. PubMed ID: 20822125 [TBL] [Abstract][Full Text] [Related]
18. Assessment of 2,4-Dinitroanisole Transformation Using Compound-Specific Isotope Analysis after Berens MJ; Hofstetter TB; Bolotin J; Arnold WA Environ Sci Technol; 2020 May; 54(9):5520-5531. PubMed ID: 32275413 [TBL] [Abstract][Full Text] [Related]
19. Carbon, hydrogen, and nitrogen isotope fractionation associated with oxidative transformation of substituted aromatic N-alkyl amines. Skarpeli-Liati M; Pati SG; Bolotin J; Eustis SN; Hofstetter TB Environ Sci Technol; 2012 Jul; 46(13):7189-98. PubMed ID: 22681573 [TBL] [Abstract][Full Text] [Related]
20. N(2): a potential pitfall for bulk (2)H isotope analysis of explosives and other nitrogen-rich compounds by continuous-flow isotope-ratio mass spectrometry. Meier-Augenstein W; Kemp HF; Lock CM Rapid Commun Mass Spectrom; 2009 Jul; 23(13):2011-6. PubMed ID: 19504480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]