These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17256828)

  • 1. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces.
    Kahan TF; Donaldson DJ
    J Phys Chem A; 2007 Feb; 111(7):1277-85. PubMed ID: 17256828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthracene photolysis in aqueous solution and ice: photon flux dependence and comparison of kinetics in bulk ice and at the air-ice interface.
    Kahan TF; Zhao R; Jumaa KB; Donaldson DJ
    Environ Sci Technol; 2010 Feb; 44(4):1302-6. PubMed ID: 20092301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pinch of salt is all it takes: chemistry at the frozen water surface.
    Kahan TF; Wren SN; Donaldson DJ
    Acc Chem Res; 2014 May; 47(5):1587-94. PubMed ID: 24785086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Chromophoric Dissolved Organic Matter on Anthracene Photolysis Kinetics in Aqueous Solution and Ice.
    Malley PPA; Grossman JN; Kahan TF
    J Phys Chem A; 2017 Oct; 121(40):7619-7626. PubMed ID: 28902519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonchromophoric organic matter suppresses polycyclic aromatic hydrocarbon photolysis in ice and at ice surfaces.
    Malley PP; Kahan TF
    J Phys Chem A; 2014 Mar; 118(9):1638-43. PubMed ID: 24527955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodegradation Rate Constants for Anthracene and Pyrene Are Similar in/on Ice and in Aqueous Solution.
    Hullar T; Magadia D; Anastasio C
    Environ Sci Technol; 2018 Nov; 52(21):12225-12234. PubMed ID: 30251528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced nitrate photolysis on ice.
    Marcotte G; Marchand P; Pronovost S; Ayotte P; Laffon C; Parent P
    J Phys Chem A; 2015 Mar; 119(10):1996-2005. PubMed ID: 25671500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-association of naphthalene at the air-ice interface.
    Ardura D; Kahan TF; Donaldson DJ
    J Phys Chem A; 2009 Jul; 113(26):7353-9. PubMed ID: 19388692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene photolysis on ice: implications for the fate of organic contaminants in the winter.
    Kahan TF; Donaldson DJ
    Environ Sci Technol; 2010 May; 44(10):3819-24. PubMed ID: 20423076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces" and on "Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces".
    Krausko J; Ondrušková G; Heger D
    J Phys Chem A; 2015 Oct; 119(43):10761-3. PubMed ID: 26456165
    [No Abstract]   [Full Text] [Related]  

  • 11. Reply to "Comment on 'Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces' and on 'Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces'".
    Donaldson DJ; Kahan TF
    J Phys Chem A; 2015 Oct; 119(43):10764-5. PubMed ID: 26451632
    [No Abstract]   [Full Text] [Related]  

  • 12. Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide.
    Chu L; Anastasio C
    J Phys Chem A; 2005 Jul; 109(28):6264-71. PubMed ID: 16833967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodecay of guaiacol is faster in ice, and even more rapid on ice, than in aqueous solution.
    Hullar T; Bononi FC; Chen Z; Magadia D; Palmer O; Tran T; Rocca D; Andreussi O; Donadio D; Anastasio C
    Environ Sci Process Impacts; 2020 Aug; 22(8):1666-1677. PubMed ID: 32671365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolysis Kinetics of Toluene, Ethylbenzene, and Xylenes at Ice Surfaces.
    Stathis AA; Hendrickson-Stives AK; Kahan TF
    J Phys Chem A; 2016 Sep; 120(34):6693-7. PubMed ID: 27513159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2012 Mar; 116(10):2519-28. PubMed ID: 22353023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic probes of the quasi-liquid layer on ice.
    Kahan TF; Reid JP; Donaldson DJ
    J Phys Chem A; 2007 Nov; 111(43):11006-12. PubMed ID: 17918812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate Photochemistry at the Air-Ice Interface and in Other Ice Reservoirs.
    McFall AS; Edwards KC; Anastasio C
    Environ Sci Technol; 2018 May; 52(10):5710-5717. PubMed ID: 29667816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Morphology Controls Reactivity of OH Radicals at the Air-Ice Interface.
    Morenz Korol KJ; Kumayon IM; Kahan TF; Donaldson DJ
    J Phys Chem A; 2021 Oct; 125(40):8925-8932. PubMed ID: 34597045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulation study of the adsorption of naphthalene and ozone on atmospheric air/ice interfaces.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2011 Aug; 115(33):9226-36. PubMed ID: 21770433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2012 Aug; 116(33):8539-46. PubMed ID: 22839303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.