These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 17256828)
21. Production of oxygen by electronically induced dissociations in ice. Johnson RE; Cooper PD; Quickenden TI; Grieves GA; Orlando TM J Chem Phys; 2005 Nov; 123(18):184715. PubMed ID: 16292929 [TBL] [Abstract][Full Text] [Related]
22. 308 nm photolysis of nitric acid in the gas phase, on aluminum surfaces, and on ice films. Zhu C; Xiang B; Chu LT; Zhu L J Phys Chem A; 2010 Feb; 114(7):2561-8. PubMed ID: 20121260 [TBL] [Abstract][Full Text] [Related]
23. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces. Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299 [TBL] [Abstract][Full Text] [Related]
24. Water-Ice Analogues of Polycyclic Aromatic Hydrocarbons: Water Nanoclusters on Cu(111). Liriano ML; Gattinoni C; Lewis EA; Murphy CJ; Sykes ECH; Michaelides A J Am Chem Soc; 2017 May; 139(18):6403-6410. PubMed ID: 28418246 [TBL] [Abstract][Full Text] [Related]
25. Toxicity increases in ice containing monochlorophenols upon photolysis: environmental consequences. Bláha L; Klánová J; Klán P; Janosek J; Skarek M; Růzicka R Environ Sci Technol; 2004 May; 38(10):2873-8. PubMed ID: 15212262 [TBL] [Abstract][Full Text] [Related]
26. Determination of 23 polycyclic aromatic hydrocarbons in atmospheric particulate matter of the Paris area and photolysis by sunlight. Muel B; Saguem S Int J Environ Anal Chem; 1985; 19(2):111-31. PubMed ID: 3980135 [TBL] [Abstract][Full Text] [Related]
27. Theoretical determination of adsorption and ionisation energies of polycyclic aromatic hydrocarbons on water ice. Michoulier E; Ben Amor N; Rapacioli M; Noble JA; Mascetti J; Toubin C; Simon A Phys Chem Chem Phys; 2018 May; 20(17):11941-11953. PubMed ID: 29667677 [TBL] [Abstract][Full Text] [Related]
28. Adsorption, mobility, and self-association of naphthalene and 1-methylnaphthalene at the water-vapor interface. Gladich I; Habartová A; Roeselová M J Phys Chem A; 2014 Feb; 118(6):1052-66. PubMed ID: 24450495 [TBL] [Abstract][Full Text] [Related]
29. Mixing of the immiscible: hydrocarbons in water-ice near the ice crystallization temperature. Lignell A; Gudipati MS J Phys Chem A; 2015 Mar; 119(11):2607-13. PubMed ID: 25302532 [TBL] [Abstract][Full Text] [Related]
30. Kinetics and mechanism of para-chlorophenol photoconversion with the presence of nitrite in ice. Kang CL; Gao HJ; Guo P; Zhang GS; Tang XJ; Peng F; Liu XJ J Hazard Mater; 2009 Oct; 170(1):163-8. PubMed ID: 19482421 [TBL] [Abstract][Full Text] [Related]
31. Photodegradation kinetics of p-tert-octylphenol, 4-tert-octylphenoxy-acetic acid and ibuprofen under simulated solar conditions in surface water. Xu Y; Nguyen TV; Reinhard M; Gin KY Chemosphere; 2011 Oct; 85(5):790-6. PubMed ID: 21745677 [TBL] [Abstract][Full Text] [Related]
32. Absorption spectra and photolysis of methyl peroxide in liquid and frozen water. Epstein SA; Shemesh D; Tran VT; Nizkorodov SA; Gerber RB J Phys Chem A; 2012 Jun; 116(24):6068-77. PubMed ID: 22217262 [TBL] [Abstract][Full Text] [Related]
33. Soil and glass surface photodegradation of etofenprox under simulated california rice growing conditions. Vasquez M; Cahill T; Tjeerdema R J Agric Food Chem; 2011 Jul; 59(14):7874-81. PubMed ID: 21675771 [TBL] [Abstract][Full Text] [Related]
34. Double ionization of quaterrylene (C40H20) in water-ice at 20 K with Ly alpha (121.6 nm) radiation. Gudipati MS; Allamandola LJ J Phys Chem A; 2006 Jul; 110(28):9020-4. PubMed ID: 16836467 [TBL] [Abstract][Full Text] [Related]
35. Nitrate Concentration near the Surface of Frozen Aqueous Solutions. Marrocco HA; Michelsen RR J Phys Chem B; 2014 Dec; 118(51):14929-41. PubMed ID: 25495473 [TBL] [Abstract][Full Text] [Related]
36. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry. Meusinger C; Berhanu TA; Erbland J; Savarino J; Johnson MS J Chem Phys; 2014 Jun; 140(24):244305. PubMed ID: 24985636 [TBL] [Abstract][Full Text] [Related]
37. Direct Observation of Anthracene Clusters at Ice Surfaces. Chakraborty S; Stubbs AD; Kahan TF J Am Chem Soc; 2022 Jan; 144(2):751-756. PubMed ID: 34982936 [TBL] [Abstract][Full Text] [Related]
38. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: implications for cold environments. Weber J; Kurková R; Klánová J; Klán P; Halsall CJ Environ Pollut; 2009 Dec; 157(12):3308-13. PubMed ID: 19540637 [TBL] [Abstract][Full Text] [Related]
39. Enhanced photolysis in aerosols: evidence for important surface effects. Nissenson P; Knox CJ; Finlayson-Pitts BJ; Phillips LF; Dabdub D Phys Chem Chem Phys; 2006 Oct; 8(40):4700-10. PubMed ID: 17047769 [TBL] [Abstract][Full Text] [Related]
40. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence. Berhanu TA; Meusinger C; Erbland J; Jost R; Bhattacharya SK; Johnson MS; Savarino J J Chem Phys; 2014 Jun; 140(24):244306. PubMed ID: 24985637 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]