BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 17256930)

  • 1. [FeFe] hydrogenase: protonation of {2Fe3S} systems and formation of super-reduced hydride states.
    Jablonskytė A; Wright JA; Fairhurst SA; Webster LR; Pickett CJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10143-6. PubMed ID: 25079249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights.
    Bourrez M; Gloaguen F
    Bioelectrochemistry; 2023 Oct; 153():108488. PubMed ID: 37329847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of phosphine derivatives of [Fe
    Hizbullah L; Rahaman A; Safavi S; Haukka M; Tocher DA; Lisensky GC; Nordlander E
    J Inorg Biochem; 2023 Sep; 246():112272. PubMed ID: 37339572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand.
    Natarajan M; Kumar N; Joshi M; Stein M; Kaur-Ghumaan S
    ChemistryOpen; 2022 Jan; 11(1):e202100238. PubMed ID: 34981908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe
    Rahaman A; Ghosh S; Unwin DG; Basak-Modi S; Holt KB; Kabir SE; Nordlander E; Richmond MG; Hogarth G
    Organometallics; 2014 Mar; 33(6):1356-1366. PubMed ID: 24748710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands.
    Schilter D; Gray DL; Fuller AL; Rauchfuss TB
    Aust J Chem; 2017 May; 70(5):505-515. PubMed ID: 28819328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Favorable Protonation of the (μ-edt)[Fe(2)(PMe(3))(4)(CO)(2)(H-terminal)](+) Hydrogenase Model Complex Over Its Bridging μ-H Counterpart: A Spectroscopic and DFT Study.
    Galinato MG; Whaley CM; Roberts D; Wang P; Lehnert N
    Eur J Inorg Chem; 2011 Mar; 2011(7):1147-1154. PubMed ID: 23162378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile electrocatalytic proton reduction by a [Fe-Fe]-hydrogenase bio-inspired synthetic model bearing a terminal CN
    Nayek A; Dey S; Patra S; Rana A; Serrano PN; George SJ; Cramer SP; Ghosh Dey S; Dey A
    Chem Sci; 2024 Feb; 15(6):2167-2180. PubMed ID: 38332837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational characterization of a diiron bridging hydride complex - a model for hydrogen catalysis.
    Gee LB; Pelmenschikov V; Wang H; Mishra N; Liu YC; Yoda Y; Tamasaku K; Chiang MH; Cramer SP
    Chem Sci; 2020 May; 11(21):5487-5493. PubMed ID: 34094075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear Scaling Relationships to Predict p
    Puthenkalathil RC; Ensing B
    Inorg Chem; 2022 Jan; 61(1):113-120. PubMed ID: 34955025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching Site Reactivity in Hydrogenase Model Systems by Introducing a Pendant Amine Ligand.
    Pandey IK; Agarwal T; Mobin SM; Stein M; Kaur-Ghumaan S
    ACS Omega; 2021 Feb; 6(6):4192-4203. PubMed ID: 33644543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamics of [FeFe]-Hydrogenase Model Compounds with Bidentate Heterocyclic Ligands.
    Thornley W; Wirick SA; Riedel-Topper M; DeYonker NJ; Bitterwolf TE; Stromberg CJ; Heilweil EJ
    J Phys Chem B; 2019 Aug; 123(33):7137-7148. PubMed ID: 31334657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts.
    Ghosh P; Ding S; Chupik RB; Quiroz M; Hsieh CH; Bhuvanesh N; Hall MB; Darensbourg MY
    Chem Sci; 2017 Dec; 8(12):8291-8300. PubMed ID: 29619175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis and characterization of a modular bridging ligand platform for bio-inspired hydrogen production.
    Topf C; Monkowius U; Knör G
    Inorg Chem Commun; 2012 Jul; 21(15):147-150. PubMed ID: 24851082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site.
    Olsen MT; Bruschi M; De Gioia L; Rauchfuss TB; Wilson SR
    J Am Chem Soc; 2008 Sep; 130(36):12021-30. PubMed ID: 18700771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steps along the path to dihydrogen activation at [FeFe] hydrogenase structural models: dependence of the core geometry on electrocatalytic proton reduction.
    Cheah MH; Borg SJ; Best SP
    Inorg Chem; 2007 Mar; 46(5):1741-50. PubMed ID: 17256930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels.
    Cheah MH; Tard C; Borg SJ; Liu X; Ibrahim SK; Pickett CJ; Best SP
    J Am Chem Soc; 2007 Sep; 129(36):11085-92. PubMed ID: 17705475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic proton reduction by phosphido-bridged diiron carbonyl compounds: distant relations to the H-cluster?
    Cheah MH; Borg SJ; Bondin MI; Best SP
    Inorg Chem; 2004 Sep; 43(18):5635-44. PubMed ID: 15332815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.
    Surawatanawong P; Tye JW; Darensbourg MY; Hall MB
    Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.