BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17256985)

  • 1. Elevation of melting temperature for confined palmitic acid inside cylindrical nanopores.
    Tang XP; Mezick BK; Kulkarni H; Wu Y
    J Phys Chem B; 2007 Feb; 111(7):1507-10. PubMed ID: 17256985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 13C NMR study of the molecular dynamics and phase transition of confined benzene inside titanate nanotubes.
    Tang XP; Wang JC; Cary LW; Kleinhammes A; Wu Y
    J Am Chem Soc; 2005 Jun; 127(25):9255-9. PubMed ID: 15969606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing and melting of water confined in silica nanopores.
    Findenegg GH; Jähnert S; Akcakayiran D; Schreiber A
    Chemphyschem; 2008 Dec; 9(18):2651-9. PubMed ID: 19035394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezing of mixtures confined in silica nanopores: experiment and molecular simulation.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Chem Phys; 2010 Aug; 133(8):084701. PubMed ID: 20815584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting mechanism of monolayers adsorbed in cylindrical pores: the influence of the pore wall roughness.
    Kuchta B; Firlej L; Denoyel R; Rols S; Johnson MR; Coasne B
    J Chem Phys; 2008 May; 128(18):184703. PubMed ID: 18532832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores.
    Lísal M; Brennan JK; Smith WR
    J Chem Phys; 2006 Feb; 124(6):64712. PubMed ID: 16483234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses.
    Sliwinska-Bartkowiak M; Jazdzewska M; Huang LL; Gubbins KE
    Phys Chem Chem Phys; 2008 Aug; 10(32):4909-19. PubMed ID: 18688535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of diblock copolymers confined in cylindrical nanopores.
    Yu B; Sun P; Chen T; Jin Q; Ding D; Li B; Shi AC
    J Chem Phys; 2007 Sep; 127(11):114906. PubMed ID: 17887879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of a Gay-Berne liquid crystal confined in cylindrical nanopores.
    Ji Q; Lefort R; Busselez R; Morineau D
    J Chem Phys; 2009 Jun; 130(23):234501. PubMed ID: 19548733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2H-solid state NMR and DSC study of isobutyric acid in mesoporous silica materials.
    Vyalikh A; Emmler T; Shenderovich I; Zeng Y; Findenegg GH; Buntkowsky G
    Phys Chem Chem Phys; 2007 Jun; 9(18):2249-57. PubMed ID: 17487322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of self-organized polyicosahedral Si nanowire.
    Nishio K; Morishita T; Shinoda W; Mikami M
    J Chem Phys; 2006 Aug; 125(7):074712. PubMed ID: 16942369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging the passage of a single hydrocarbon chain through a nanopore.
    Koshino M; Solin N; Tanaka T; Isobe H; Nakamura E
    Nat Nanotechnol; 2008 Oct; 3(10):595-7. PubMed ID: 18838997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructures self-assembled in polymer solutions confined in cylindrical nanopores.
    Chen H; Ruckenstein E
    Langmuir; 2009 Oct; 25(20):12315-9. PubMed ID: 19537830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of liquid crystals confined to mesoporous materials as studied by 13C NMR spectroscopy of methyl iodide and methane as probe molecules.
    Tallavaara P; Jokisaari J
    J Phys Chem B; 2008 Jan; 112(3):764-75. PubMed ID: 18166037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.
    Lebedev K; Mafé S; Stroeve P
    J Phys Chem B; 2005 Aug; 109(30):14523-8. PubMed ID: 16852830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement.
    Nakahara H; Dudek A; Nakamura Y; Lee S; Chang CH; Shibata O
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):61-7. PubMed ID: 18977123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning reactive microdomains inside polydimethylsiloxane microchannels by trapping and melting functional polymer particles.
    Yamamoto M; Yamada M; Nonaka N; Fukushima S; Yasuda M; Seki M
    J Am Chem Soc; 2008 Oct; 130(43):14044-5. PubMed ID: 18834115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.