BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17257678)

  • 1. Involvement of Tetrahymena pyriformis and selected fungi in the elimination of anthracene, and toxicity assessment of the biotransformation products.
    Guiraud P; Bonnet JL; Boumendjel A; Kadri-Dakir M; Dusser M; Bohatier J; Steiman R
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):296-305. PubMed ID: 17257678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of anthracene toxicity toward environmental eukaryotic microorganisms: Tetrahymena pyriformis and selected micromycetes.
    Bonnet JL; Guiraud P; Dusser M; Kadri M; Laffosse J; Steiman R; Bohatier J
    Ecotoxicol Environ Saf; 2005 Jan; 60(1):87-100. PubMed ID: 15482845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis.
    Bonnet JL; Bonnemoy F; Dusser M; Bohatier J
    Environ Toxicol; 2007 Feb; 22(1):78-91. PubMed ID: 17295264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity profiles of four metals and 17 xenobiotics in the human hepatoma cell line HepG2 and the protozoa Tetrahymena pyriformis--a comparison.
    Rudzok S; Krejči S; Graebsch C; Herbarth O; Mueller A; Bauer M
    Environ Toxicol; 2011 Apr; 26(2):171-86. PubMed ID: 19790250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISTA13-catecholamine toxicity and metabolism in the ciliated protozoan, Tetrahymena pyriformis.
    Ud-Daula A; Pfister G; Schramm KW
    Environ Toxicol; 2009 Dec; 24(6):549-54. PubMed ID: 19051280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis.
    Zhang YY; Yang J; Yin XX; Yang SP; Zhu YG
    Eur J Protistol; 2012 Aug; 48(3):227-36. PubMed ID: 22342134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment.
    Giraud F; Guiraud P; Kadri M; Blake G; Steiman R
    Water Res; 2001 Dec; 35(17):4126-36. PubMed ID: 11791842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of anthracene and phenanthrene by filamentous fungi capable of cortexolone 11-hydroxylation.
    Lisowska K; Długoński J
    J Basic Microbiol; 1999; 39(2):117-25. PubMed ID: 10335604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring fission of anthracene by a eukaryote.
    Hammel KE; Green B; Gai WZ
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10605-8. PubMed ID: 1961727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri.
    Bonnet JL; Bonnemoy F; Dusser M; Bohatier J
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):576-83. PubMed ID: 18322725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomethylation and Volatilization of Arsenic by Model Protozoan Tetrahymena pyriformis under Different Phosphate Regimes.
    Yin X; Wang L; Zhang Z; Fan G; Liu J; Sun K; Sun GX
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28216593
    [No Abstract]   [Full Text] [Related]  

  • 12. [Tetrahymena pyriformis--a cell test system for environmental medicine. The effect of harmful substances on the cell morphology of Tetrahymena pyriformis].
    Müller A; Herbarth O
    Zentralbl Hyg Umweltmed; 1994 Oct; 196(3):227-36. PubMed ID: 7848498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photolysis of the herbicide sulcotrione: formation of a major photoproduct and its toxicity evaluation.
    ter Halle A; Wiszniowski J; Hitmi A; Ledoigt G; Bonnemoy F; Bonnet JL; Bohatier J; Richard C
    Pest Manag Sci; 2009 Jan; 65(1):14-8. PubMed ID: 18785224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of prostaglandins (PGs) in Tetrahymena pyriformis, GL and the effect of aspirin.
    Hokama Y; Yokochi L; Abad MA; Shigemura L; Kimura LH; Okano C; Chou SC
    Res Commun Chem Pathol Pharmacol; 1982 Oct; 38(1):169-72. PubMed ID: 6815741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi.
    Choudhary MI; Erum S; Atif M; Malik R; Khan NT; Atta-ur-Rahman
    Steroids; 2011 Nov; 76(12):1288-96. PubMed ID: 21762714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of alternating magnetic fields (60--100 gauss, 60 Hz) on Tetrahymena pyriformis.
    Tabrah FL; Guernsey DL; Chou SC; Batkin S
    TIT J Life Sci; 1978; 8(3-4):73-7. PubMed ID: 112713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of structural photomodification on the toxicity of environmental contaminants: anthracene photooxidation products.
    Mallakin A; McConkey BJ; Miao G; McKibben B; Snieckus V; Dixon DG; Greenberg BM
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):204-12. PubMed ID: 10375423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of cinobufagin by Cunninghamella elegans.
    Qiao L; Zhou YZ; Qi XL; Lin LH; Chen H; Pang LY; Pei YH
    J Antibiot (Tokyo); 2007 Apr; 60(4):261-4. PubMed ID: 17456977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of 6,7-epoxygeraniol by fungi.
    Anioł M; Huszcza E
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):311-5. PubMed ID: 16133341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin in the unicellular Tetrahymena pyriformis: effects of different lighting conditions.
    Köhidai L; Vakkuri O; Keresztesi M; Leppäluoto J; Csaba G
    Cell Biochem Funct; 2002 Sep; 20(3):269-72. PubMed ID: 12125105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.