BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17257822)

  • 41. Recycling MSWI bottom and fly ash as raw materials for Portland cement.
    Pan JR; Huang C; Kuo JJ; Lin SH
    Waste Manag; 2008; 28(7):1113-8. PubMed ID: 17627805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leachate formation and characteristics from gasification and grate incineration bottom ash under landfill conditions.
    Sivula L; Sormunen K; Rintala J
    Waste Manag; 2012 Apr; 32(4):780-8. PubMed ID: 22197667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation.
    Takeuchi M; Kawahata H; Gupta LP; Itouga M; Sakakibara H; Ohta H; Komai T; Ono Y
    J Hazard Mater; 2009 Jun; 165(1-3):967-73. PubMed ID: 19084330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MSWI bottom ash used as basement at two pilot-scale roads: comparison of leachate chemistry and reactive transport modeling.
    De Windt L; Dabo D; Lidelöw S; Badreddine R; Lagerkvist A
    Waste Manag; 2011 Feb; 31(2):267-80. PubMed ID: 20609573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.
    Takahashi F; Shimaoka T
    Waste Manag; 2012 Dec; 32(12):2294-305. PubMed ID: 22796015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical extraction of organic carbon to reduce the leaching potential risk from MSWI bottom ash.
    Guimaraes AL; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2005 Oct; 125(1-3):141-6. PubMed ID: 16023784
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete.
    Shi HS; Kan LL
    J Hazard Mater; 2009 May; 164(2-3):750-4. PubMed ID: 18838222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure.
    Chou JD; Wey MY; Chang SH
    J Hazard Mater; 2009 Mar; 162(2-3):1000-6. PubMed ID: 18614278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of MSWI bottom ash organic carbon behavior: a biophysicochemical approach.
    Rendek E; Ducom G; Germain P
    Chemosphere; 2007 Apr; 67(8):1582-7. PubMed ID: 17234247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations.
    Ginés O; Chimenos JM; Vizcarro A; Formosa J; Rosell JR
    J Hazard Mater; 2009 Sep; 169(1-3):643-50. PubMed ID: 19427118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An ecotoxicological evaluation of aged bottom ash for use in constructions.
    Stiernström S; Enell A; Wik O; Borg H; Breitholtz M
    Waste Manag; 2014 Jan; 34(1):86-92. PubMed ID: 24188924
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.
    Park SB; Jang YI; Lee J; Lee BJ
    J Hazard Mater; 2009 Jul; 166(1):348-55. PubMed ID: 19124198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copper(II) binding to dissolved organic matter fractions in municipal solid waste incinerator bottom ash leachate.
    Olsson S; Van Schaik JW; Gustafsson JP; Kleja DB; Van Hees PA
    Environ Sci Technol; 2007 Jun; 41(12):4286-91. PubMed ID: 17626426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Leaching of different elements from subbase layers of alternative aggregates in pavement constructions.
    Flyhammar P; Bendz D
    J Hazard Mater; 2006 Sep; 137(1):603-11. PubMed ID: 16762498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of waste input and combustion technology on MSWI bottom ash quality.
    Rendek E; Ducom G; Germain P
    Waste Manag; 2007; 27(10):1403-7. PubMed ID: 17509859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste.
    Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K
    Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Life cycle based risk assessment of recycled materials in roadway construction.
    Carpenter AC; Gardner KH; Fopiano J; Benson CH; Edil TB
    Waste Manag; 2007; 27(10):1458-64. PubMed ID: 17499986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash.
    Huang SJ; Chang CY; Mui do T; Chang FC; Lee MY; Wang CF
    J Hazard Mater; 2007 Oct; 149(1):180-8. PubMed ID: 17478037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles.
    Bendz D; Tüchsen PL; Christensen TH
    J Contam Hydrol; 2007 Dec; 94(3-4):178-94. PubMed ID: 17686548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hospital waste incinerator bottom ash leachate induced cyto-genotoxicity in Allium cepa and reproductive toxicity in mice.
    Akinbola TI; Adeyemi A; Morenikeji OA; Bakare AA; Alimba CG
    Toxicol Ind Health; 2011 Jul; 27(6):505-14. PubMed ID: 21343229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.