BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 17257914)

  • 1. Effects of non-enzymatic glycation on cancellous bone fragility.
    Tang SY; Zeenath U; Vashishth D
    Bone; 2007 Apr; 40(4):1144-51. PubMed ID: 17257914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
    Karim L; Vashishth D
    PLoS One; 2012; 7(4):e35047. PubMed ID: 22514706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-enzymatic glycation alters microdamage formation in human cancellous bone.
    Tang SY; Vashishth D
    Bone; 2010 Jan; 46(1):148-54. PubMed ID: 19747573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone.
    Karim L; Tang SY; Sroga GE; Vashishth D
    Osteoporos Int; 2013 Sep; 24(9):2441-7. PubMed ID: 23471564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-phenacylthiazolium bromide reduces bone fragility induced by nonenzymatic glycation.
    Bradke BS; Vashishth D
    PLoS One; 2014; 9(7):e103199. PubMed ID: 25062024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of nonenzymatic glycation on biomechanical properties of cortical bone.
    Vashishth D; Gibson GJ; Khoury JI; Schaffler MB; Kimura J; Fyhrie DP
    Bone; 2001 Feb; 28(2):195-201. PubMed ID: 11182378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.
    Sroga GE; Siddula A; Vashishth D
    PLoS One; 2015; 10(2):e0117240. PubMed ID: 25679213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone.
    Tang SY; Vashishth D
    J Biomech; 2011 Jan; 44(2):330-6. PubMed ID: 21056419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone.
    Willett TL; Sutty S; Gaspar A; Avery N; Grynpas M
    Bone; 2013 Feb; 52(2):611-22. PubMed ID: 23178516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A direct role of collagen glycation in bone fracture.
    Poundarik AA; Wu PC; Evis Z; Sroga GE; Ural A; Rubin M; Vashishth D
    J Mech Behav Biomed Mater; 2015 Dec; 52():120-130. PubMed ID: 26530231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of carboxymethyl-lysine (CML) in human cortical bone.
    Thomas CJ; Cleland TP; Sroga GE; Vashishth D
    Bone; 2018 May; 110():128-133. PubMed ID: 29408699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate.
    Tang SY; Allen MR; Phipps R; Burr DB; Vashishth D
    Osteoporos Int; 2009 Jun; 20(6):887-94. PubMed ID: 18850239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Mechanical, Material, and Compositional Determinants of Human Trabecular Bone Quality in Type 2 Diabetes.
    Sihota P; Yadav RN; Dhaliwal R; Bose JC; Dhiman V; Neradi D; Karn S; Sharma S; Aggarwal S; Goni VG; Mehandia V; Vashishth D; Bhadada SK; Kumar N
    J Clin Endocrinol Metab; 2021 Apr; 106(5):e2271-e2289. PubMed ID: 33475711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.
    Abraham AC; Agarwalla A; Yadavalli A; Liu JY; Tang SY
    Bone; 2016 Jun; 87():37-43. PubMed ID: 27021150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone From Men With Type 2 Diabetes Mellitus.
    Hunt HB; Torres AM; Palomino PM; Marty E; Saiyed R; Cohn M; Jo J; Warner S; Sroga GE; King KB; Lane JM; Vashishth D; Hernandez CJ; Donnelly E
    J Bone Miner Res; 2019 Jul; 34(7):1191-1206. PubMed ID: 30866111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties.
    Karim L; Bouxsein ML
    Bone; 2016 Jan; 82():21-7. PubMed ID: 26211993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional microarchitecture of adolescent cancellous bone.
    Ding M; Danielsen CC; Hvid I; Overgaard S
    Bone; 2012 Nov; 51(5):953-60. PubMed ID: 22884723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation and glycoxidation end products in bone.
    Wang B; Vashishth D
    Bone; 2023 Nov; 176():116880. PubMed ID: 37579812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes.
    Karim L; Moulton J; Van Vliet M; Velie K; Robbins A; Malekipour F; Abdeen A; Ayres D; Bouxsein ML
    Bone; 2018 Sep; 114():32-39. PubMed ID: 29857063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue.
    Gautieri A; Passini FS; Silván U; Guizar-Sicairos M; Carimati G; Volpi P; Moretti M; Schoenhuber H; Redaelli A; Berli M; Snedeker JG
    Matrix Biol; 2017 May; 59():95-108. PubMed ID: 27616134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.