These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17258445)

  • 21. Numerical simulation of municipal solid waste combustion in a novel two-stage reciprocating incinerator.
    Huai XL; Xu WL; Qu ZY; Li ZG; Zhang FP; Xiang GM; Zhu SY; Chen G
    Waste Manag; 2008; 28(1):15-29. PubMed ID: 17236753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combustion characteristics of particles of hazardous solid waste mixtures in a fixed bed.
    Tao L; Zhao G; Sun R; Wang Q
    J Hazard Mater; 2010 Sep; 181(1-3):305-14. PubMed ID: 20570042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment and use of air pollution control residues from MSW incineration: an overview.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2008 Nov; 28(11):2097-121. PubMed ID: 18037284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundamental characteristics of input waste of small MSW incinerators in Korea.
    Choi KI; Lee SH; Lee DH; Osako M
    Waste Manag; 2008 Nov; 28(11):2293-300. PubMed ID: 18082391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of formation of dioxins in combustion gas of municipal waste incinerators by spray water injection.
    Kubota E; Shigechi T; Takemasa T; Momoki S; Arizono K
    Environ Sci; 2007; 14 Suppl():89-95. PubMed ID: 18382417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.
    Soria J; Gauthier D; Flamant G; Rodriguez R; Mazza G
    Waste Manag; 2015 Sep; 43():176-87. PubMed ID: 26050934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed.
    Sun R; Ismail TM; Ren X; Abd El-Salam M
    J Environ Manage; 2015 Jul; 157():111-7. PubMed ID: 25897505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of regenerated ferric oxide for CO destruction and suppressing dioxin formation in flue gas in a pilot-scale incinerator.
    Hung WT; Lin CF
    Chemosphere; 2003 Nov; 53(7):727-35. PubMed ID: 13129512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.
    Yang YB; Sharifi V; Swithenbank J
    Waste Manag; 2008 Nov; 28(11):2245-58. PubMed ID: 18513938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators.
    Tejima H; Nishigaki M; Fujita Y; Matsumoto A; Takeda N; Takaoka M
    Chemosphere; 2007 Jan; 66(6):1123-30. PubMed ID: 16860372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elaboration of new formulations to remove micropollutants in MSWI flue gas.
    Brasseur A; Gambin A; Laudet A; Marien J; Pirard JP
    Chemosphere; 2004 Aug; 56(8):745-56. PubMed ID: 15251289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of dioxins and metals emission from radwaste plasma arc melter system.
    Yang HC; Kim JH
    Chemosphere; 2004 Nov; 57(5):421-8. PubMed ID: 15331269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage.
    Ferré-Huguet N; Nadal M; Mari M; Schuhmacher M; Borrajo MA; Domingo JL
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):130-4. PubMed ID: 17492387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.
    Shie JL; Chang CY; Lin JP; Le DJ; Wu CH
    Water Sci Technol; 2001; 44(10):349-63. PubMed ID: 11794677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined simulation of combustion and gas flow in a grate-type incinerator.
    Ryu C; Shin D; Choi S
    J Air Waste Manag Assoc; 2002 Feb; 52(2):189-97. PubMed ID: 15143794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic behavior of oxygenated combustion by-products.
    de Joannon M; Ciajolo A; Ragucci R; Tregrossi A; Cavaliere A
    Chemosphere; 2003 Jun; 51(10):1071-7. PubMed ID: 12718972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review: mercury in waste incineration.
    van Veizen D; Langenkamp H; Herb G
    Waste Manag Res; 2002 Dec; 20(6):556-68. PubMed ID: 12549668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility.
    Löthgren CJ; van Bavel B
    Chemosphere; 2005 Oct; 61(3):405-12. PubMed ID: 16182858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
    Riber C; Bhander GS; Christensen TH
    Waste Manag Res; 2008 Feb; 26(1):96-103. PubMed ID: 18338706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.