These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 17258470)

  • 1. Patterns of leg muscle recruitment vary between novice and highly trained cyclists.
    Chapman AR; Vicenzino B; Blanch P; Hodges PW
    J Electromyogr Kinesiol; 2008 Jun; 18(3):359-71. PubMed ID: 17258470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads.
    Chapman AR; Vicenzino B; Blanch P; Hodges PW
    Exp Brain Res; 2007 Aug; 181(3):503-18. PubMed ID: 17549464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg muscle recruitment in highly trained cyclists.
    Chapman AR; Vicenzino B; Blanch P; Knox JJ; Hodges PW
    J Sports Sci; 2006 Feb; 24(2):115-24. PubMed ID: 16368620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is running less skilled in triathletes than runners matched for running training history?
    Chapman AR; Vicenzino B; Blanch P; Hodges PW
    Med Sci Sports Exerc; 2008 Mar; 40(3):557-65. PubMed ID: 18379221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between cadence and lower extremity EMG in cyclists and noncyclists.
    Marsh AP; Martin PE
    Med Sci Sports Exerc; 1995 Feb; 27(2):217-25. PubMed ID: 7723645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment?
    Chapman A; Vicenzino B; Blanch P; Hodges P
    J Sci Med Sport; 2009 Jan; 12(1):31-4. PubMed ID: 18077215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficiency of pedaling and the muscular recruitment are improved with increase of the cadence in cyclists and non-cyclists.
    Dantas JL; Smirmaul BP; Altimari LR; Okano AH; Fontes EB; Camata TV; Moraes AC
    Electromyogr Clin Neurophysiol; 2009; 49(6-7):311-9. PubMed ID: 19845104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of leg preference on bilateral muscle activation during cycling.
    Carpes FP; Diefenthaeler F; Bini RR; Stefanyshyn DJ; Faria IE; Mota CB
    J Sports Sci; 2011 Jan; 29(2):151-9. PubMed ID: 21120741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic fitness, muscle efficiency, and motor unit recruitment during ramp exercise.
    Boone J; Koppo K; Barstow TJ; Bouckaert J
    Med Sci Sports Exerc; 2010 Feb; 42(2):402-8. PubMed ID: 19927017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of electromyography fatigue threshold in lower limb muscles in trained cyclists and untrained non-cyclists.
    Smirmaul BP; Dantas JL; Fontes EB; Altimari LR; Okano AH; Moraes AC
    Electromyogr Clin Neurophysiol; 2010; 50(3-4):149-54. PubMed ID: 20552949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of body position on leg kinematics and muscle recruitment during cycling.
    Chapman AR; Vicenzino B; Blanch P; Knox JJ; Dowlan S; Hodges PW
    J Sci Med Sport; 2008 Nov; 11(6):519-26. PubMed ID: 17719847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence.
    Sanderson DJ; Martin PE; Honeyman G; Keefer J
    J Electromyogr Kinesiol; 2006 Dec; 16(6):642-9. PubMed ID: 16377214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tibialis posterior EMG activity during barefoot walking in people with neutral foot posture.
    Murley GS; Buldt AK; Trump PJ; Wickham JB
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e69-77. PubMed ID: 18053742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusted saddle position counteracts the modified muscle activation patterns during uphill cycling.
    Fonda B; Panjan A; Markovic G; Sarabon N
    J Electromyogr Kinesiol; 2011 Oct; 21(5):854-60. PubMed ID: 21684759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electrode location on EMG signal envelope in leg muscles during gait.
    Campanini I; Merlo A; Degola P; Merletti R; Vezzosi G; Farina D
    J Electromyogr Kinesiol; 2007 Aug; 17(4):515-26. PubMed ID: 16889982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?
    Hug F; Turpin NA; Guével A; Dorel S
    J Appl Physiol (1985); 2010 Jun; 108(6):1727-36. PubMed ID: 20299611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation and vision change the relationship between muscle activity of the lower limbs and body movement during human balance perturbations.
    Patel M; Gomez S; Lush D; Fransson PA
    Clin Neurophysiol; 2009 Mar; 120(3):601-9. PubMed ID: 19136294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways.
    Duc S; Bertucci W; Pernin JN; Grappe F
    J Electromyogr Kinesiol; 2008 Feb; 18(1):116-27. PubMed ID: 17123833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.