BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17258755)

  • 1. Application of a two-dimensional model for predicting the pressure-flow and compression properties during column packing scale-up.
    McCue JT; Cecchini D; Chu C; Liu WH; Spann A
    J Chromatogr A; 2007 Mar; 1145(1-2):89-101. PubMed ID: 17258755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a robust model of packing and scale-up for chromatographic beds. 1. Mechanical compression.
    Keener RN; Maneval JE; Fernandez EJ
    Biotechnol Prog; 2004; 20(4):1146-58. PubMed ID: 15296442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale.
    Stickel JJ; Fotopoulos A
    Biotechnol Prog; 2001; 17(4):744-51. PubMed ID: 11485438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancement in the modeling of pressure-flow for the guidance of development and scale-up of commercial-scale biopharmaceutical chromatography.
    Keener RN; Fernandez EJ; Maneval JE; Hart RA
    J Chromatogr A; 2008 May; 1190(1-2):127-40. PubMed ID: 18374935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical deformation of compressible chromatographic columns.
    Keener RN; Maneval JE; Ostergren KC; Fernandez EJ
    Biotechnol Prog; 2002; 18(3):587-96. PubMed ID: 12052077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a robust model of packing and scale-up for chromatographic beds. 2. Flow packing.
    Keener RN; Maneval JE; Fernandez EJ
    Biotechnol Prog; 2004; 20(4):1159-68. PubMed ID: 15296443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the performance of pilot-scale countercurrent chromatography: scale-up predictions and experimental verification of erythromycin separation.
    Booth AJ; Sutherland IA; Lye GJ
    Biotechnol Bioeng; 2003 Mar; 81(6):640-9. PubMed ID: 12529878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for the prediction of scale-up when using compressible chromatographic packings.
    Tran R; Joseph JR; Sinclair A; Bracewell D; Zhou Y; Titchener-Hooker NJ
    Biotechnol Prog; 2007; 23(2):413-22. PubMed ID: 17302429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual behavior of the height equivalent to a theoretical plate of a new poroshell stationary phase at high temperatures.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Oct; 1169(1-2):125-38. PubMed ID: 17889884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the axial and radial temperature profiles of a chromatographic column. Influence of thermal insulation on column efficiency.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Jan; 1138(1-2):141-57. PubMed ID: 17141792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic impact of particle shape in slurry packed liquid chromatography columns.
    Lottes F; Arlt W; Minceva M; Stenby EH
    J Chromatogr A; 2009 Jul; 1216(30):5687-95. PubMed ID: 19524930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphase flow modeling in centrifugal partition chromatography.
    Adelmann S; Schwienheer C; Schembecker G
    J Chromatogr A; 2011 Sep; 1218(36):6092-101. PubMed ID: 21324465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence of the influence of the surface chemistry of the packing material on the column pressure drop in reverse-phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2006 Dec; 1136(2):192-201. PubMed ID: 17046011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-column simulated moving-bed process for binary separation.
    Rodrigues RC; Canhoto TJ; Araújo JM; Mota JP
    J Chromatogr A; 2008 Feb; 1180(1-2):42-52. PubMed ID: 18154982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effects of column packing quality and residence time changes on protein monomer/aggregate separation.
    McCue JT; Engel P; Thömmes J
    J Chromatogr A; 2009 Jun; 1216(24):4895-901. PubMed ID: 19419721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations.
    Liu H; Finch JW; Lavallee MJ; Collamati RA; Benevides CC; Gebler JC
    J Chromatogr A; 2007 Apr; 1147(1):30-6. PubMed ID: 17320886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of an error in the column hold-up time for correct adsorption isotherm determination in chromatography II. Can a wrong column porosity lead to a correct prediction of overloaded elution profiles?
    Samuelsson J; Zang J; Murunga A; Fornstedt T; Sajonz P
    J Chromatogr A; 2008 Jun; 1194(2):205-12. PubMed ID: 18499114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peak compression factor of proteins.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Aug; 1216(33):6124-33. PubMed ID: 19604512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides.
    Gilar M; Neue UD
    J Chromatogr A; 2007 Oct; 1169(1-2):139-50. PubMed ID: 17897658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thermal heterogeneity in hydrophobic interaction chromatography.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Sep; 1216(39):6716-27. PubMed ID: 19698947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.