These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17258793)

  • 1. Tracers for investigating pathogen fate and removal mechanisms in mesocosms.
    Werker AG; Van Loon W; Legge RL
    Sci Total Environ; 2007 Jul; 380(1-3):188-95. PubMed ID: 17258793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ monitoring of microbial biomass in wetland mesocosms.
    McHenry J; Werker A
    Water Sci Technol; 2005; 51(9):233-41. PubMed ID: 16042263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial mechanisms of carbon removal in subsurface flow wetlands.
    Baptista JD; Donnelly T; Rayne D; Davenport RJ
    Water Sci Technol; 2003; 48(5):127-34. PubMed ID: 14621156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of bacterial removal during the filtration process in constructed wetlands.
    Sleytr K; Tietz A; Langergraber G; Haberl R
    Sci Total Environ; 2007 Jul; 380(1-3):173-80. PubMed ID: 17439820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands.
    Caselles-Osorio A; García J
    Sci Total Environ; 2007 Jun; 378(3):253-62. PubMed ID: 17433416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of bacteria by filtration in planted and non-planted sand columns.
    Wand H; Vacca G; Kuschk P; Krüger M; Kästner M
    Water Res; 2007 Jan; 41(1):159-67. PubMed ID: 17084880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent.
    Matamoros V; García J; Bayona JM
    Water Res; 2008 Feb; 42(3):653-60. PubMed ID: 17826819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands.
    Vacca G; Wand H; Nikolausz M; Kuschk P; Kästner M
    Water Res; 2005 Apr; 39(7):1361-73. PubMed ID: 15862336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of biofilm on removal of surrogate faecal microbes in a constructed wetland and maturation pond.
    Stott R; Tanner CC
    Water Sci Technol; 2005; 51(9):315-22. PubMed ID: 16042273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands.
    Tietz A; Kirschner A; Langergraber G; Sleytr K; Haberl R
    Sci Total Environ; 2007 Jul; 380(1-3):163-72. PubMed ID: 17223185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring and assessing processes of organic chemicals removal in constructed wetlands.
    Imfeld G; Braeckevelt M; Kuschk P; Richnow HH
    Chemosphere; 2009 Jan; 74(3):349-62. PubMed ID: 18996559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland.
    Wiessner A; Kappelmeyer U; Kuschk P; Kästner M
    Water Res; 2005 Nov; 39(19):4643-50. PubMed ID: 16246395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.
    Boutilier L; Jamieson R; Gordon R; Lake C; Hart W
    Water Res; 2009 Sep; 43(17):4370-80. PubMed ID: 19595429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water quality improvement in a full-scale tertiary constructed wetland: effects on conventional and specific organic contaminants.
    Llorens E; Matamoros V; Domingo V; Bayona JM; García J
    Sci Total Environ; 2009 Apr; 407(8):2517-24. PubMed ID: 19200587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling E.coli fate and transport in treatment wetlands using the water quality analysis and simulation program.
    Boutilier L; Jamieson R; Gordon R; Lake C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):680-91. PubMed ID: 21644144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biodegradation tests and gas emissions from subsurface flow constructed wetlands.
    García J; Capel V; Castro A; Ruíz I; Soto M
    Bioresour Technol; 2007 Nov; 98(16):3044-52. PubMed ID: 17142037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrous oxide emission from polyculture constructed wetlands: effect of plant species.
    Wang Y; Inamori R; Kong H; Xu K; Inamori Y; Kondo T; Zhang J
    Environ Pollut; 2008 Mar; 152(2):351-60. PubMed ID: 17655987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals in constructed wetland microcosmos: effects of sorption, sulphate reduction and Phragmites australis.
    Lesage E; Tack FM; De Pauw N; Verloo MG
    Commun Agric Appl Biol Sci; 2006; 71(1):59-62. PubMed ID: 17191474
    [No Abstract]   [Full Text] [Related]  

  • 20. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.