BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17259272)

  • 1. Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
    Solov'yov IA; Chandler DE; Schulten K
    Biophys J; 2007 Apr; 92(8):2711-26. PubMed ID: 17259272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
    Ahmad M; Galland P; Ritz T; Wiltschko R; Wiltschko W
    Planta; 2007 Feb; 225(3):615-24. PubMed ID: 16955271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.
    Zeugner A; Byrdin M; Bouly JP; Bakrim N; Giovani B; Brettel K; Ahmad M
    J Biol Chem; 2005 May; 280(20):19437-40. PubMed ID: 15774475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark.
    Pooam M; Arthaut LD; Burdick D; Link J; Martino CF; Ahmad M
    Planta; 2019 Feb; 249(2):319-332. PubMed ID: 30194534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoreception through cryptochrome may involve superoxide.
    Solov'yov IA; Schulten K
    Biophys J; 2009 Jun; 96(12):4804-13. PubMed ID: 19527640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.
    Hammad M; Albaqami M; Pooam M; Kernevez E; Witczak J; Ritz T; Martino C; Ahmad M
    Photochem Photobiol Sci; 2020 Mar; 19(3):341-352. PubMed ID: 32065192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced electron transfer in a cryptochrome blue-light photoreceptor.
    Giovani B; Byrdin M; Ahmad M; Brettel K
    Nat Struct Biol; 2003 Jun; 10(6):489-90. PubMed ID: 12730688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
    Leberecht B; Kobylkov D; Karwinkel T; Döge S; Burnus L; Wong SY; Apte S; Haase K; Musielak I; Chetverikova R; Dautaj G; Bassetto M; Winklhofer M; Hore PJ; Mouritsen H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):97-106. PubMed ID: 35019998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass.
    Efimova O; Hore PJ
    Biophys J; 2008 Mar; 94(5):1565-74. PubMed ID: 17981903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
    Wiltschko R; Ahmad M; Nießner C; Gehring D; Wiltschko W
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27146685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    Banerjee R; Schleicher E; Meier S; Viana RM; Pokorny R; Ahmad M; Bittl R; Batschauer A
    J Biol Chem; 2007 May; 282(20):14916-22. PubMed ID: 17355959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.
    Hoang N; Schleicher E; Kacprzak S; Bouly JP; Picot M; Wu W; Berndt A; Wolf E; Bittl R; Ahmad M
    PLoS Biol; 2008 Jul; 6(7):e160. PubMed ID: 18597555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Polarizable Embedding for Absorption Spectrum Calculations of
    Frederiksen A; Gerhards L; Reinholdt P; Kongsted J; Solov'yov IA
    J Phys Chem B; 2024 Jun; ():. PubMed ID: 38913544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
    Müller P; Ahmad M
    J Biol Chem; 2011 Jun; 286(24):21033-40. PubMed ID: 21467031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes.
    Grüning G; Wong SY; Gerhards L; Schuhmann F; Kattnig DR; Hore PJ; Solov'yov IA
    J Am Chem Soc; 2022 Dec; 144(50):22902-22914. PubMed ID: 36459632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M
    Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochrome magnetoreception: four tryptophans could be better than three.
    Wong SY; Wei Y; Mouritsen H; Solov'yov IA; Hore PJ
    J R Soc Interface; 2021 Nov; 18(184):20210601. PubMed ID: 34753309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.